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THE INTERPOLATION OF LAGRANGE IN SPACE ℝ𝒎

Gabriel Poveda Ramos1

ABSTRACT
In this article, a formula is deduced in an original manner for interpolation in the real space of m dimensions (ℝ𝑚), 

inspired by the well-known Lagrange formula for real functions (𝐹(𝑥)) of a variable on the real line ℝ. The results that 
are shown here do not seem well known, at least not in Colombian university journals. These results have been searched 
by the author for some time, and he has not found them. In the end, he had to deduce them himself.

KEYWORDS: Numerical Analysis; Numerical Integration; Analytic Geometry in Space; Convex polyhedra. 

LA INTERPOLACIÓN DE LAGRANGE EN EL ESPACIO ℝ𝒎

RESUMEN
En este artículo se deduce de manera original una fórmula de interpolación en el espacio real de m dimensiones 

(ℝ𝑚), inspirada en la conocida fórmula de Lagrange para funciones reales (𝐹(𝑥)) de una variable, es decir en la recta real 
ℝ. Los resultados que aquí se obtienen no parecen ser muy conocidos, al menos, en los medios universitarios de Colom-
bia. El autor los ha buscado durante mucho tiempo, sin hallarlos. Finalmente tuvo que deducirlos por sí solo.

PALABRAS CLAVE:  análisis numérico; integracion numérica; Geometría Analítica del Espacio; Cuerpos convexos.

A INTERPOLAÇÃO DE LAGRANGE NO ESPAÇO ℝ𝒎

RESUMO
Este artigo se deduz de uma forma original uma fórmula de interpolação no espaço real de 𝑚 dimensões reais 

(ℝ𝑚), inspirada pela conhecida fórmula de Lagrange para funções reais (𝐹(𝑥)) de uma variável, ou seja, na reta real ℝ. 
Os resultados aqui obtidos não parecem ser bem conhecidos, pelo menos na academia da Colômbia. O autor os tem pro-
curado por um longo tempo, sem encontrá-los. Finalmente teve que deduzi-los sozinho.

PALAVRAS-CHAVE: Análise Numérica; Integração Numérica; Geometria Analítica no Espaço; Poliedros convexos.
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1.      INTRODUCTION

 The Lagrange formula for interpolation for 
real functions of a single variable can be found in all 
books, elementary and advanced, on numerical anal-
ysis. In some of the more advanced books they use it 
to deduce other results that are very important for 
numerical analysis and very useful for applications 
in engineering, actuarial science, economics, and 
other real sciences. It can be seen, for example, in 
what are now classic books from Hammign, Ralston, 
Scheid, Willers, Mineur, Pearson, and others that are 
cited in the bibliography.

But, unfortunately, none of these now fa-
mous books say how this formula can be extended 
to continuous functions of two variables, that is in 
the form 𝐹(𝑥, 𝑦), defined in a continuous domain of 
plane 𝑂𝑋𝑌. They do not even suggest to readers the 
possibilities of doing so. Of course, even less space 
is spent on the continuous functions 𝐹(𝑥, 𝑦, 𝑧) of 
three variables in tridimensional space 𝑂𝑋𝑌𝑍 (or, in
space ℝ3, as modern books call it). The author has 
searched for several years, in books and in maga-
zines, advanced and elementary, in different fields of 
algebra, analysis, and analytic geometry, to see if any 
of them present Lagrange’s formula in two or more 
variables, or if they even suggest that it is possible 
to construct it. But he has found nothing. Therefore, 
he has proceeded to do this work and deduce the La-
grange formulas to interpolate the functions of two, 
three, and n dimensions (𝑛 ≥ 2) that are presented
in this article.

2.     LAGRANGE’S FORMULA IN ONE 
DIMENSION

1. Let’s remember what Lagrange’s formula 
is in one dimension: we have points on the straight 
line N (𝑛 ≥ 2) with abscissae 𝑥1,  𝑥2,  … ,  𝑥𝑁 which,  
if  desired,  can be considered as well-known real 
numbers in their numerical value,  that is,  they can 
be f ed into a computer with precision and with the 
exact number of  digits as appropriate. Further-
more,  in order to f acilitate nomenclature,  let’s sup-

pose,  without a loss of  generality,  that 𝑥1 <𝑥2 <𝑥3 
<⋯<𝑥𝑁, siendo, being, of course, 𝑥1, the smallest 
of all, and 𝑥𝑁 the largest of  all. We also have N nu-
merical values 𝑢1,  𝑢2,  … ,  𝑢𝑁 corresponding to a vari-
able dependent on the points 𝑥𝑖 (being 𝑖 = 1, 2, … , 
𝑁) mentioned above. These last numerical values, if 
desired,  can be considered as known data,  without 
errors in measurement,  which can also be f ed into 
a computer with as many exact digits as required. 
In some situations,  the values 𝑢𝑖 can be those that 
correspond to a known f unction 𝐹(𝑥) defined on an
open interval  of  the real line,  which contains within 
it the open interval that goes f rom 𝑥1 to 𝑥𝑁. In other 
situations, the numbers 𝑢𝑖 are simply measured or 
observed values of  a physical,  economic,  or other 
variable f rom which it is known that it can vary with 
𝑥 in a continuous manner, but without knowing the
explicit f unction 𝐹(𝑥) that gives the value of 

𝑢 = 𝐹(𝑥)

through computation operations from the val-
ue of 𝑥. The problem in question is to estimate what 
the value is that corresponds to u in any point x con-
tained in I, and that is not any of the 𝑥𝑖 previously 
mentioned. It deals with,  in other words,  the inter-
polation of  the variable between values 𝑢1,  𝑢2,  … ,  𝑢𝑁.

This problem has existed since the days of 
Newton, and he, as well as other greats of math-
ematical analysis such as Cotes, Vandermonde, 
Gauss, Lagrange, Hermite, and Tchebicheff dedicat-
ed extensive work to the subject from the 17th to the 
20th centuries.

It was Newton who established the first great 
strategy to solve it, which consists in appealing to 
the class of whole polynomials in variable x, of de-
gree N-1 and searching within them for the polyno-
mial (unique), that passes through points (𝑥1,  𝑢1),  
(𝑥2,  𝑢2),  … (𝑥𝑁,  𝑢𝑁) on the Cartesian plane 𝑂𝑋𝑈. New-
ton himself has shown that this polynomial exists 
and is unique, only under the requirement (some-
what evident) that 𝑥1 ≠ 𝑥2 ≠ ⋯ ≠ 𝑥𝑛 . We call it 𝑝(𝑥)
as well as “the position polynomial” of  data 𝑥𝑖 with 
values 𝑢𝑖. Numerical Analysis books present several 
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ways of writing this polynomial. One the polyno-
mial 𝑝𝑛 (𝑥), is known, it would be used (following 
Newton) to estimate the value of u on an arbitrary 
point on x. It is obvious that, given the definition of 
𝑝(𝑥), the abscissae 𝑥𝑖 and its corresponding values 
𝑢𝑖 meet the N identities.

𝑝(𝑥1) =  𝑢1

(1.01)
𝑝(𝑥2) =  𝑢2

⋮

𝑝(𝑥𝑁) =  𝑢𝑁

Vandermonde gave the position polynomial 
the very general and very elegant form that is ex-
pressed with the determinant that bears his name

𝑝(𝑥) 1 𝑥 …. 𝑥𝑁−1

𝑦
1

1 𝑥
1

…. 𝑥1
𝑁−1

𝑦
2

1 𝑥
2

…. 𝑥2
𝑁−1 = 0 (1.02)

⋮
𝑦𝑁 1 𝑥𝑁 …. 𝑥N

𝑁−1

But this determinant is cumbersome to handle 
in arithmetic and algebraic calculations. So, La-
grange found an equivalent, very general formula, 
(which bears his name) for the placement polyno-
mial, and which is expressed in the form

𝑖= 𝑁

�
𝑖= 1

(𝑥−𝑥1) … (𝑥−𝑥𝑖−1) (𝑥−𝑥𝑖+1) … (𝑥−𝑥𝑁)
𝑝(𝑥)=  𝑢𝑖 (1.03)

(𝑥i−𝑥1) … (𝑥i−𝑥𝑖−1) (𝑥i−𝑥𝑖+1) … (𝑥i−𝑥𝑁)

This is Lagrange’s famous formula for interpo-
lation, which is more adaptable to numerical com-
putation, and can be programmed without difficulty 
for a personal computer. It is very easy to prove that 
the right side of this formula (1.03) is a polynomial 
of degree N-1 and that it satisfies the N conditions 
(1.01) written above. Therefore, it is the position 
polynomial of values 𝑢𝑖 with values 𝑥𝑖, a polynomial 
that, as one knows, is unique although it can be pre-
sented in various forms.

The right-hand side of formula (1.03) is often 
abbreviated, coexisting in adopting the notation

π(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2) … (𝑥 − 𝑥𝑁−1)             

(𝑥 − 𝑥𝑁) �
𝑖= 1

≡(𝑥 − 𝑥𝑖)
(1.04)

And furthermore

(𝑥−𝑥1)(𝑥−𝑥𝑖) … (𝑥− 𝑥𝑖−1)(𝑥− 𝑥𝑖+1)…(𝑥 − 𝑥𝑁)
li(𝑥)= (1.05)

(𝑥i−𝑥1) (𝑥i−𝑥2) … (𝑥i−𝑥𝑖–1) (𝑥i−𝑥𝑖+1)… (𝑥i−𝑥𝑁)

It becomes obvious that the denominator of 
𝑙𝑖(𝑥) is

(𝑥𝑖 − 𝑥1)(𝑥𝑖 − 𝑥2) … (𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1) 
… (𝑥𝑖 − 𝑥𝑛 ) =  𝜋′(𝑥𝑖)

(1.06)

=  𝑑𝜋(𝑥)⁄𝑑𝑥, valorado en 𝑥 =  𝑥𝑖
(1.07)

And therefore 𝑙𝑖(𝑥) is the degree polynomial
N-1 given by

𝜋(𝑥)
𝑙𝑖(𝑥) (1.08)

 (𝑥 − 𝑥𝑖) 𝜋′(𝑥𝑖)

In this way, the Lagrange formula for the inter-
polating and position polynomials for the points (𝑥1,  
𝑢1),  (𝑥2,  𝑢2),  … (𝑥𝑁,  𝑢𝑁) can be written

𝑁
�
𝑖= 1

𝑝(𝑥)=  𝑢𝑖 ∙  𝑙𝑖 (𝑥) (1.09)

which is the summarized form of Equation 
1.03.

2. If it were known in advance that there is 
an explicit, analytically well-defined function that 
binds 𝑢 and x in the form

𝑢 = 𝐹(𝑥)                            (2.01)

which is numerically computable, it would be 
obvious that identities are fulfilled.

 𝑢1 =  F(x1)

(2.02)
𝑢2 =  F(x2)

⋮
𝑢n =  F(xn)
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and that on the N points 𝑥𝑖(𝑖 = 1, 2, … , 𝑁), it
would occur that the values of  the f unction 𝐹(𝑥) co-
incide with those of  the position polynomial 𝑝(𝑥𝑖):

𝐹(𝑥1) =  𝑝(𝑥1)

(2.03)
𝐹(𝑥2) =  𝑝(𝑥2)

⋮

𝐹(𝑥n) =  𝑝(𝑥n)

But, in general, at other points x of the real line, 
other than the network 𝑥1,  𝑥2,  … 𝑥𝑁 prescribed from 
the beginning, the function 𝐹(𝑥) and the polynomial 
𝑝(𝑥) need not coincide. However, using Rolle’s theo-
rem and the Taylor series,  in all numerical analysis 
books it is shown that f or any x of the domain of 
𝐹(𝑥), it would have equal value

1 (𝑁)
𝐹(𝑥) =  𝑝(𝑥)+ — 𝜋(𝑥)𝐹 (2.04)

𝑁! (𝑧)

where z is a point whose value cannot be de-
termined, but which certainly exists and belongs to 
the open interval 𝐼 = (𝑥1 … 𝑥𝑁). This can be seen in 
any of the books mentioned in the bibliography. In 
this way, it is possible to at least know how much 
the maximum limit is of the absolute error of 𝜀(𝑥)
that is committed when using 𝑝(𝑥) to estimate the
value of  𝑢 at a point x that is not of the points 𝑥1,  𝑥2,  
… 𝑥𝑁. Indeed:

1
�

(𝑁)
max∣ε(𝑥)∣ = — max 𝜋(𝑥)𝐹 (2.05)

𝑁! x∊I (𝑧)

as a brief reflection shows. Thus, if we know 
𝐹(𝑥) and its derivatives to 𝐹(x)

(𝑁), the Lagrange for-
mula can be written:

�
(𝑥₋𝑥1)…(𝑥₋𝑥𝑖−1)(𝑥₋𝑥𝑖+1)…(𝑥₋𝑥𝑁)

u(𝑥)⁼F(𝑥)⁼  𝑢𝑖⁺ε(𝑥) (2.06)
(𝑥i

₋𝑥1)…(𝑥i
₋𝑥𝑖−1)(𝑥i

₋𝑥𝑖+1)…(𝑥i
₋𝑥𝑁)

and the “error” is bounded by the formula 
(2.05).

But if 𝐹(𝑥) and its derivatives are not known, 
the most that can be written is that

𝑢(𝑥) =  𝑝(𝑥) + 𝜀(𝑥)                      (2.07) 

where 𝜀(𝑥1) = 0 = 𝜀(𝑥2) = ⋯ 𝜀(𝑥𝑁) = 0, and those 
who use math for worldly purposes write

𝑢(𝑥) = ≃ 𝑝(𝑥) en 𝑥 𝜖 𝐼                   (2.08)

with the permission of formalist orthodoxy.

3. THE PLANE ON ℝ3 THAT PASSES 
THROUGH THREE POINTS

3. In order to generalize Lagrange’s formula 
for several variables, let’s recall the following result 
from analytic geometry in three-dimensional space.

3. On ℝ3 there are three distinct points 𝑄1(𝑥1,  
𝑦1,  𝑧1),  𝑄2(𝑥2,  𝑦2,  𝑧2),  𝑄3(𝑥3,  𝑦3,  𝑧3),  and we need to es-
tablish the value of the coefficients of the plane

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 1 =  0                (3.01)

that passes through the three points men-
tioned. It is obvious, then, that such coefficients are 
the numbers that fulfill the condition

𝑥 𝑦 z 1
𝑥

1
𝑦

1
z

1
1

= 0 (3.02)
𝑥

2
𝑦

2
z

2
1

𝑥
3

𝑦
3

z
3

1

taught by analytic geometry. The projections 
of 𝑄1,  𝑄2,  𝑄3   on the plane 𝑂𝑋𝑌 are called 𝑃1(𝑥1,  𝑦1),  
𝑃2(𝑥2,  𝑦2),  𝑃3(𝑥3,  𝑦3).

Developing the determinant (3.02) through 
the Laplace rule, we find that

𝑥     𝑦    1 𝑥     𝑦    1 𝑥     𝑦    1

(3.03)
𝑥2    𝑦2    1 𝑥1    𝑦1    1 𝑥1    𝑦1    1
𝑥3    𝑦3    1 𝑥3    𝑦3    1 𝑥3    𝑦3    1

𝑧= 𝑧1– 𝑧2+ 𝑧3Δ Δ Δ

and in this expression the symbol ∆ is the de-
terminant

𝑥     𝑦    z1

(3.04)Δ= 𝑥2    𝑦2    z2
𝑥3    𝑦3    z3

By executing algebraic operations and simpli-
fying terms, it turns out that the plane searched for, 
which passes through 𝑄1,  𝑄2 and 𝑄3, is the plane
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(𝑥−𝑥2)(𝑦−𝑦3)− (𝑥−𝑥3)(𝑦−𝑦2)
z(𝑥, y)=  z1 +

(𝑥1−𝑥2)(𝑦1−𝑦3)−(𝑥1−𝑥3)(𝑦1−𝑦2)

(𝑥−𝑥3)(𝑦−𝑦1)− (𝑥−𝑥1)(𝑦−𝑦3)
(3.05)+  z2 +

(𝑥2−𝑥3)(𝑦2−𝑦1)−(𝑥2−𝑥1)(𝑦2−𝑦3)

(𝑥−𝑥1)(𝑦−𝑦2)− (𝑥−𝑥2)(𝑦−𝑦1)
+  z3 = L(𝑥, y)

(𝑥3−𝑥1)(𝑦3−𝑦2)−(𝑥3−𝑥2)(𝑦3−𝑦1)

Now it can be noted that both the numerators 
and denominators of the fractions on the right side 
of (2.05) have a clear geometrical meaning, which is 
shown in the attached figure.

Figure 1

In this figure, we have the plane 𝑂𝑋𝑌 and the
three points 𝑃1(𝑥1,  𝑦1),  𝑃2(𝑥2,  𝑦2),  𝑃3(𝑥3,  𝑦3). The ge-
neric point 𝑃𝑛 (𝑥, 𝑦) is the projection in this plane of 
a generic point 𝑄(𝑥, 𝑦, 𝑧), located in the plane to be
searched.

The area of the triangle 𝑃1𝑃2𝑃3 is,  as is well 
known

1
𝑥1     𝑥2     𝑥3

(3.06)A123 = — 𝑦1     𝑦2     𝑦32
1       1       1

and it is easy to demonstrate that if 𝑃1,  𝑃2,  𝑃3 

are in the left-hand order, the determinant of (2.06) 

is a positive number. This determinant can be devel-
oped and written in three ways:

𝐴123= (1⁄2)[(𝑥1−𝑥2)(𝑦1−𝑦3)−(𝑥1−𝑥3)(𝑦1 − 𝑦2)]

=  (1⁄2) [(𝑥2− 𝑥3)(𝑦2 − 𝑦1) − (𝑥2 − 𝑥1)(𝑦2 − 𝑦3)]

=  (1⁄2) [(𝑥3− 𝑥1)(𝑦3 − 𝑦2) − (𝑥3− 𝑥2)(𝑦3 −𝑦1)]

(3.07)

Furthermore, the area of the triangle 𝑃 𝑃2  𝑃3  is

1
𝑥       𝑦       1

(3.06)A023 = — 𝑥2     𝑦2      12
𝑥3     𝑦3      1

=  (1⁄2)[(𝑥−𝑥2)(𝑦−𝑦3)−(𝑥−𝑥3)(𝑦− 𝑦2)]    (3.08 A)

We can see also that

(1⁄2)[(𝑥 − 𝑥3)(𝑦 − 𝑦1) − (𝑥 − 𝑥1)

(𝑦 − 𝑦3 )]  =  (1⁄2)  
𝑥1     𝑦1     1
𝑥      𝑦      1
𝑥3     𝑦3     1

 =  

(1⁄2) 𝐴103  =  (1⁄2)𝐴103

(3.09)

where

𝐴103  = 
Area (oriented,  that is,  signified) of  the tri-
angle 𝑃1𝑃 𝑃3,  traversing in that order of  its 
vertices

Furthermore,

(1⁄2)[(𝑥 − 𝑥1)(𝑦 − 𝑦2) − (𝑥 − 𝑥2)

(𝑦 − 𝑦1 )]  =  (1⁄2)  
𝑥1      𝑦1     1
𝑥2      𝑦2     1
𝑥        𝑦      1

 =  

(1⁄2) 𝐴120  

(3.10)

where

𝐴
120  = 

the oriented (and signified) area of  the tri-
angle 𝑃1𝑃 𝑃3,  traversed in that order of  its 
vertices

Theref ore,  the equation of  the plane passing 
through 𝑄1,  𝑄2,  𝑄3 can also be written as

𝐴023 𝐴103 𝐴120 (3.11)𝑧(𝑥, 𝑦)=  𝑧1 +  𝑧2+ 𝑧3  =  𝐿(𝑥, 𝑦)
𝐴123 𝐴123 𝐴123
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The signs of the areas of the various triangles in 
view are determined by a rule well known in three-
dimensional analytic geometry, which is as follows.

The points 𝑄1,  𝑄2,  𝑄3 are listed so that their 
projections 𝑃1𝑃2𝑃3, traversed in this order, deter-
mine a left-handed triangle whose area 𝐴123 we 
agree is positive.

Under these conditions, the three areas 𝐴023,  
𝐴103,  𝐴120 have positive or negative signs,  depending 
on whether their respective triangles 𝑃 𝑃2𝑃3,  𝑃1𝑃𝑃3,  
𝑃1𝑃2𝑃 indicate, with the order of their three sub-
indices,  a lef t-handed path or a right-handed path.

By going to the determinants that define 𝐴023,  
𝐴103,  𝐴120, or to an elementary drawing, we find that, 
whatever the signs are in these three areas, we have to

𝐴023  + 𝐴103  + 𝐴120  =  𝐴123 (3.12)

or

𝐴023⁄𝐴123  + 𝐴103⁄𝐴123  + 𝐴120⁄𝐴123  =   1 (3.12.A)

The coefficients 𝐴023⁄𝐴123,  𝐴103⁄𝐴123,  𝐴120⁄𝐴123    
can be:

a. All positive, when 𝑃 is inside 𝑃1𝑃2𝑃3.

b. Two positive and one negative. For exam-
ple, in Figure 2 it is

𝐴023  > 0  ; 𝐴103  > 0  ; 𝐴120  < 0

c. One positive and two negatives. For exam-
ple, in Figure 3 it is

𝐴023  < 0  ; 𝐴103  > 0 ; 𝐴120  < 0

Figure 2

Figure 3

The numbers 𝐴023⁄𝐴123, 𝐴103⁄𝐴123 y 𝐴120⁄𝐴123 

are called, in geometry, the trilinear coordinates of 
the point P referring to the triangle 𝑃1𝑃2𝑃3.

It is also very easy to prove or verify that if, 
in any of the three numbers 𝐴023,  𝐴103,  𝐴120  an even 
permutation is made of said number’s subscripts, it 
would not vary in absolute value or sign.

𝐴023 = 𝐴302 = 𝐴230 < 0 ; 𝐴103=  𝐴310= 𝐴031 > 0
(3.13)

𝐴120 =  𝐴012 =  𝐴201 <  0

But if an odd permutation is made, those num-
bers change sign:

𝐴023= – 𝐴203 = –𝐴032 ; 𝐴103=  ––𝐴310= 𝐴031 
(3.14)

𝐴120 =  –𝐴012 =  –𝐴201 

The signs of the areas can also be established 
according to the following rules:

a. The area 𝐴123 will be taken as positive (al-
though the vertices 𝑃1𝑃2𝑃3 are in a right-hand se-
quence).

b. Each area 𝐴𝑜𝑖𝑗  (where i,j are a pair taken 
from the list 1,2,3) has its sign like this:

- If (𝑃𝑜𝑃𝑖𝑃𝑗 ) ∩ (𝑃1𝑃2𝑃3) is not empty, it will be 
put as 𝑠𝑖𝑔𝑛 𝐴𝑜𝑖𝑗  = +1

- If (𝑃𝑜𝑃𝑖𝑃𝑗 ) ∩ (𝑃1𝑃2𝑃3) is empty, it will be put 
as 𝑠𝑖𝑔𝑛 𝐴𝑜𝑖𝑗 = −1
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and this regardless of the order in which we 
write the three subscripts.

It should be noted that each area 𝐴𝑖𝑗𝑘

𝑥1      𝑥2     𝑥3 
𝐴𝑖𝑗𝑘 = 𝑦1      𝑦2     𝑦3

1        1        1

retains its algebraic and numerical value, in-
cluding the sign, when an even permutation of the 
subscripts is made, as well as when it makes a par-
allel translation of the coordinate system, and even 
also when this coordinate system rotates in the 
plane. These properties are shown algebraically, 
and are checked by mere geometric observation.

Figure 4

In Figure 4 it can be seen immediately that, by 
the similarity of the triangles, it can be written that

𝐴012 0.5×𝑃1𝑃2 × 𝐻3𝑃 𝐻3𝑃 k3𝑃
= = = 

𝐴312 0.5×𝑃1𝑃2 × 𝐻3𝑃3 𝐻3𝑃3 k3𝑃3

and in a similar manner

𝐴023⁄𝐴123  = k1𝑃 / k1𝑃1 =  trilinear coordinate of  𝑃
in direction 𝑧1

𝐴031⁄𝐴123  = k2𝑃 / k2𝑃2 =  trilinear coordinate of  
𝑃 in direction 𝑧2

4. In summary,  we have the f ollowing theo-
rem: f or the three points

𝑄1(𝑥1,  𝑦1,  𝑧1)  ,  𝑄(𝑥2,  𝑦2,  𝑧2) ,  𝑄(𝑥3,  𝑦3,  𝑧3)

given in the Euclidean space ℝ3, whose projec-
tions in the plane 𝑂𝑋𝑌 are

𝑃1(𝑥1, 𝑦1) ,     𝑃2(𝑥2, 𝑦2)     ,      𝑃3(𝑥3, 𝑦3)

and whose coordinates do not nullify the de-
terminant (3.04)

𝑥1    𝑦1    z1
Δ= 𝑥2    𝑦2    z2

𝑥3    𝑦3    z3

for these three points 𝑄1,  𝑄2,  𝑄3 passes a single 
plane of  ℝ3, whose equation is first degree in x and 
first degree in y, and which can be written in the 
form found in (3.10)

𝐴023 𝐴103 𝐴120 (4.01)𝑧(𝑥, 𝑦)=  𝑧1 +  𝑧2+ 𝑧3  
𝐴123 𝐴123 𝐴123

where:

𝐴123:
Area of  the ref erence triangle 
𝑃1𝑃2𝑃3,  which we consider 
positive

(4.02)

𝑃(𝑥, 𝑦):

Generic point of  𝑂𝑋𝑌 which is 
projection of  the generic point 
𝑄(𝑥, 𝑦, 𝑧), which runs through
the plane we describe

𝐴102
: Area of  triangle 𝑃0𝑃1𝑃2,  with 

sign given by (3.13) and (3.14)

𝐴103:
Area of  the triangle 𝑃0𝑃1𝑃2,  with 
sign given by (3.13) and (3.14)

𝐴120
: Area of  the triangle 𝑃0𝑃1𝑃2,  with 

sign given by (3.13) and (3.14)

𝐴123  =  𝐴012  + 𝐴103  + 𝐴120

Said equation can also be written

k1𝑃 k2𝑃 k3𝑃
(4.03)𝑧(𝑥, 𝑦)=  𝑧1 +  𝑧2+ 𝑧3  

k1𝑃1 k2𝑃2 k3𝑃3

Where segments k1𝑃 ,  k2𝑃 , k3𝑃  carry “plus” 
or “minus” signs according to conventions (3.13) and 
(3.14).

If in the equation
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𝐴023 𝐴103 𝐴120 (4.01 B)𝑧(𝑥, 𝑦)=  𝑧1 +  𝑧2+ 𝑧2  
𝐴123 𝐴123 𝐴123

the point 𝑃(𝑥, 𝑦) moves to match 𝑃1(𝑥, 𝑦). It 
can be seen that Figure 3 and Formula (3.03) say 
that when

𝑃(𝑥, 𝑦) → 𝑃1(𝑥1,  𝑦1) then 𝐴023  →  𝐴123

𝐴103  =  𝐴031  →  0

𝐴120  =  𝐴012  →  0

and that, consequently, when P coincides with 
𝑃1, the Equation 3.10.B reduces to the identity

𝑧(𝑥, 𝑦) = 𝑧1

as was required from the outset.

By analogous considerations we can verify that

𝑧(𝑥2,  𝑦2) =  𝑧2 y que 𝑧(𝑥3,  𝑦3) =  𝑧3

It is well known that the three medians of the 
triangle 𝑃1𝑃2𝑃3 are cut at the same point, located at 
2/3 of their lengths, and measured from the respec-
tive vertices. That point coincides with the center of 
gravity G of the triangle, and with the vertices deter-
mines, three triangles which are

𝑧(𝑥𝐺,  𝑦𝐺) =  (𝑧1  + 𝑧2  + 𝑧3)⁄3

as is only made just clear.

4.     LAGRANGE’S FORMULA FOR FOUR 
POINTS ON THE PLANE

5. We now deal with the case of 4 distinct, ar-
bitrary, fixed points in plane ℝ2, with known Carte-
sian coordinates:

𝑃1(𝑥1,  𝑦1),  𝑃2(𝑥2,  𝑦2),  𝑃3(𝑥2,  𝑦3),  𝑃4(𝑥4,  𝑦4)

as shown in the attached figure. Also, in that 
region of the plane there is a continuous and dif-
ferentiable function 𝑓(𝑥, 𝑦), which, in these points 
adopts the four values

𝑓(𝑥1,  𝑦1) = 𝑧1  ;  𝑓(𝑥2,  𝑦2) =  𝑧2   ;   𝑓(𝑥3,  𝑦3) 

=  𝑧3   ;    𝑓(𝑥4, 𝑦4)

We then have a variable,  arbitrary point on the 
same plane 𝑂𝑋𝑌, which we will call 𝑃(𝑥, 𝑦).

Figure 5

We consider all the triangles that can be formed 
with the 4 given points, and that have a vertex in 
𝑃1. The number of such triangles is the same as the 
combinations of 4-1 which are points, other than 𝑃1, 
taken two by two (regardless of order), which is

� 4 − 1 � =32

Let us construct the triangles that form with a 
vertex in P, in 𝑃1 and the different pairs of the other 
vertices 𝑃2,  𝑃3,  𝑃4. The areas of these triangles will 
be called, as above:

𝐴132  = 
Area of  the triangle 𝑃1𝑃2𝑃3 (which we take 
with positive sign)

𝐴142  = 
Area of  the triangle 𝑃1𝑃2𝑃4 (which we take 
with positive sign)

𝐴1𝑖𝑗= 
Area of  the triangle 𝑃1𝑃𝑖 𝑃𝑗    (which we take 
with positive sign)

𝐴032  = 
Area of  the triangle 𝑃𝑃3𝑃2 (which has a 
positive sign)

and, in general,
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𝐴𝑜𝑖𝑗  = 

the area of the triangle 𝑃𝑃𝑖𝑃𝑗  which is 
positive if the order of its vertices is left-
handed and negative if that order is right-
handed.

Guiding ourselves by the ideas of Lagrange, we 
construct the expression:

𝐴023 𝐴034 𝐴024p(𝑥, 𝑦)≡ 𝑧1 𝐴123 𝐴134 𝐴124

𝐴034 𝐴041 𝐴031 +𝑧2 
𝐴234 𝐴241 𝐴231

𝐴041 𝐴012 𝐴024 +𝑧3 
𝐴341 𝐴312 𝐴342

𝐴012 𝐴023 𝐴013 (5.01) +𝑧4 
𝐴412 𝐴423 𝐴413

which we can also write in a summarized man-
ner as,

𝑖= 𝑁
�
𝑖= 1

3
�
(j,k)

𝐴𝑜𝑗𝑘𝑝(𝑥, y)≡  z1

 
(5.02)

𝐴𝑖𝑗𝑘

where (𝑖, 𝑗, 𝑘) is one of the three sets of three 

that can be extracted from the quatern (1,2,3,4). For 

the latter, and by definition, this must be 𝑖 ≠ 𝑗 ,  𝑗 ≠

𝑘 ,  𝑘 ≠ 𝑖 . The number of factors to the right of the 

output (∏) is � 4 − 1 � =32 . Formula (5.01), which 

we have summarized in (5.02), will be called the La-

grange interpolation formula for four points in the 

two dimensions 𝑂𝑋, 𝑂𝑌.

Furthermore, as we have already said:

1 𝑥i      𝑦i     1 1 𝑥       𝑦      1
𝐴𝑖𝑗𝑘= — 𝑥𝑗      𝑦𝑗     1 ; 𝐴𝑜𝑗𝑘= — 𝑥𝑗      𝑦𝑗     1

(5.03)
2

𝑥k      𝑦k     1
2

𝑥k       𝑦k     1

These expressions show that numbers 𝐴𝑖𝑗𝑘 are 

parameters that are determined by the f our points 

𝑃1,  𝑃2,  𝑃3,  𝑃4. Of these parameters, there are 

�
4

�
4!

= =  4
3 3! 1!

They are written in the denominators of the 
expression in (4.01).

On the other hand, for each fixed value of index 
i, the number of factors 𝐴𝑜𝑗𝑘 is

�
4 – 1

�
3!

= =  3
2 2! 1!

and this is how, effectively, each 𝑧𝑖 is accom-
panied by three f actors 𝐴𝑜𝑗𝑘. multiplying it. Further-
more, the equations in (5.03) show that each factor 
𝐴𝑜𝑗𝑘 is a trinomial in 𝑥, 𝑦, bilinear and non-homoge-
nous,  which means it has the f orm

𝐴𝑜𝑗𝑘  =  𝑎𝑗𝑘 𝑥 + 𝑏𝑗𝑘  𝑦 + 𝑐𝑗𝑘

Therefore, the product of three of them is a 
polynomial of the third degree in 𝑥, 𝑦, that is, it takes
the f orm

𝑝(𝑥, 𝑦)= 𝛼30𝑥3 +𝛼21𝑥2𝑦+ 𝛼12𝑥𝑦2 + 𝛼03𝑦3 +
+𝛼20𝑥2 + 𝛼11𝑥𝑦+𝛼𝑜2𝑦2 +𝛼10𝑥+𝛼𝑜1𝑦+ 𝛼𝑜𝑜

(5.04)

Hence the expression in (5.01) is a third-de-
gree polynomial in x and third degree in y, which can 
have up to 10 numerical coefficients.

To calculate what values the expression takes 
at the four given reference points (𝑃1,  𝑃2,  𝑃3,  𝑃4), 
note that, when P tends to 𝑃𝑘, or 𝑃𝑗    the parameter 
𝐴𝑜𝑗𝑘 tends to zero,  because

𝐴𝑗𝑗𝑘 = 0 𝐴𝑘𝑗𝑘 (5.05)

Therefore, when we set 𝑃(𝑥, 𝑦) to match 𝑃1(𝑥1,  
𝑦1), the polynomial in (5.01) takes the form

𝑝(𝑥1,  𝑦1) =  𝑧1 (5.06.1)

The same considerations lead us to find that

𝑝(𝑥2,  𝑦2) =  𝑧2 (5.06.2)

𝑝(𝑥
3
,  𝑦

3
) =  𝑧

3
(5.06.3)

𝑝(𝑥
4
,  𝑦

4
)  =  𝑧

4
(5.06.4)
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This means that the polynomial (5.04), which 
contains up to ten coefficients, passes through the 
four points 𝑄1(𝑥1,  𝑦1,  𝑧1),  𝑄2(𝑥1,  𝑦1,  𝑧1),  𝑄3(𝑥3,  𝑦3,  𝑧3),  
𝑄4(𝑥4,  𝑦4,  𝑧4),  located in the three-dimensional space  
ℝ3. The projections of these points are 𝑃1(𝑥1,  𝑦1),        
𝑃2(𝑥2,  𝑦2),  𝑃3(𝑥3,  𝑦3),  𝑃4(𝑥4,  𝑦4).

Thus, 𝑝(𝑥, 𝑦) satisfies the given 4 points. But
we can no longer say that it is the third-degree poly-
nomial that passes through such points.

6. It should be remembered that the polyno-
mial in 𝑥, 𝑦, of the f our points 𝑄1,  𝑄2,  𝑄3,  𝑄4, which is 
also isotropic in both variables, is

𝑓11(𝑥, 𝑦) =  𝛽11𝑥𝑦 + 𝛽10 𝑥 + 𝛽01𝑦 +  𝛽00 (6.01)

Since its four coefficients 𝛽𝑖𝑗 are univocally de-
fined by the f our conditions

𝛽11 𝑥1 𝑦1  + 𝛽10 𝑥1  + 𝛽01𝑦1  +  𝛽00  =  𝑧1

𝛽
11 

𝑥
2 𝑦2 + 𝛽

10 𝑥2 + 𝛽
01

𝑦
2 + 𝛽

00   =  𝑧
2

(6.02)
𝛽

11
𝑥

3 𝑦3  + 𝛽
10

𝑥
3  + 𝛽

01
𝑦

3 + 𝛽
00   =  𝑧

3

𝛽
11

𝑥
4
𝑦

4  + 𝛽
10

𝑥
4  + 𝛽

01
𝑦

4  +  𝛽
00  =  𝑧

4

It is also known that the polynomial (5.01) is 
defined, implicitly but univocally by equation

𝑓11(𝑥, 𝑦) 𝑥 𝑦 𝑥 𝑦 1
𝑧1 𝑥1 𝑦1 𝑥1 𝑦1 1
𝑧2 𝑥2 𝑦2 𝑥2 𝑦2 1 = 0 (6.03)

𝑧3 𝑥3 𝑦3 𝑥3 𝑦3 1

𝑧4 𝑥4 𝑦4 𝑥4 𝑦4 1

whose determinant is often called the Vander-
monde determinant.

There is also a unique placement polynomial 
(with four coefficients) for the four points 𝑄1,  𝑄2,  𝑄3,  
𝑄4 that has the quadratic f orm in 𝑥 and linear in 𝑦.

𝑓20(𝑥, 𝑦) =  𝛾20𝑥2  + 𝛾10𝑥 + 𝛾01  𝑦 +   𝛾00 (6.04)

but which is anisotropic.

This is determined univocally by four equa-

tions analogous to those in (5.02) or by a Vander-

monde equation analogous to that in (6.03), except 

that the column in 𝑥 is changed by a column in 𝑥2.

There is another polynomial

𝑓02(𝑥, 𝑦) =  𝛿02  𝑦2  + 𝛿01  𝑦 + 𝛿10𝑥 + 𝛿00 (6.05)

which is linear in x and quadratic in y, aniso-

tropic, which is univocally determined by four other 

conditions of the form of the equations in (5.02), 

and given implicitly and univocally by another 

Vandermonde equation similar to (5.03), but where 

column in 𝑥𝑦 is changed by a column in 𝑦2.

7. Turning now to the function 𝑓(𝑥, 𝑦) pre-

sented at the beginning of  number 5,  it is now clear 

that we can write it in the f orm

𝑓(𝑥, 𝑦) = 𝑝(𝑥, 𝑦) + ∅ (𝑥) �𝐴𝑜ℎ𝑘 (7.01)

Where (ℎ,  𝑘) is one of the six pairs that can be

extracted f rom the quatern (1, 2, 3, 4). In the above 

expression,  we are writing the interpolation error 

𝜀(𝑥, 𝑦) as

𝜀(𝑥, 𝑦) =  ∅ (𝑥) ∙ 𝐴023(𝑥, 𝑦) ∙ 𝐴034(𝑥, 𝑦) ∙      

𝐴024(𝑥, 𝑦) ∙ 𝐴041(𝑥, 𝑦) ∙ 𝐴031(𝑥, 𝑦) ∙ 𝐴012(𝑥,  𝑦)

because the latter term fulfills the conditions 

required for

𝑓(𝑥1,  𝑦1) =  𝑝(𝑥1,  𝑦1)= 𝑧1     ;   𝑓(𝑥2,  𝑦2) =  𝑝(𝑥2,  𝑦2) =  𝑧2

𝑓(𝑥3,  𝑝3  =  𝑝(𝑥3,  𝑦3)= 𝑧3   ;  𝑓(𝑥4,  𝑦4) =  𝑝(𝑥4,  𝑦4) = 𝑧4

8. Example. Consider, as an example of the 

above, a function 𝑓(𝑥, 𝑦), defined in a region of the 

plane containing the four points

𝑃1(0, 0)   ,    𝑃2(𝑎, 0)   ,   𝑃3(𝑎, 𝑏)  ,   𝑃4(0, 𝑏)

shown in the attached figure.
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Figure 6

Consider also a point 𝑃(𝑥, 𝑦) contained in that

same region; and construct the Lagrange f ormula to 

interpolate a f unction 𝑓(𝑥, 𝑦) whose values at the

f our points 𝑃1,  𝑃2,  𝑃3,  𝑃4 are respectively

𝑓(0, 0)= 𝑧  ,  𝑓(𝑎, 0) = 𝑧2   ,    𝑓(𝑎, 𝑏)= 𝑧3   ,   
𝑓(0, 𝑏) = 𝑧4

(8.01)

We make the necessary triangulation for for-

mula (5.01), as seen in the neighboring figure. And 

we calculate the areas of these triangles, which are 

almost evident

𝐴123 = 𝑎𝑏⁄2   𝐴134 = 𝑎𝑏⁄2 𝐴124  = 𝑎𝑏⁄2

𝐴023  =  𝑏 (𝑎−𝑥)⁄2 𝐴034  =  𝑎 (𝑏−𝑦)⁄2
𝐴024  =  𝑏[𝑎(𝑏 − 𝑦)⁄𝑏 − 𝑥] =  𝐴042

𝐴041 = 𝑏𝑥⁄2 𝐴013 =  −𝐴031=  𝑏(𝑎𝑦⁄𝑏− 𝑥)

𝐴012  =  𝑎𝑦⁄2

(8.02)

But, as already seen:

𝐴023 𝐴034 𝐴024 𝐴034 𝐴041 𝐴031𝑝(𝑥, 𝑦) = 𝑧1 + 𝑧2  +   
𝐴123 𝐴134 𝐴124 𝐴234 𝐴241 𝐴231

𝐴041 𝐴012 𝐴042 𝐴012 𝐴023 𝐴013+ 𝑧3 + 𝑧4  
𝐴341 𝐴312 𝐴342 𝐴412 𝐴423 𝐴413

(8.03)

Substituting the values of  the areas (with their 
corresponding “plus” or “minus” sign),  you have:

𝑏(𝑎 − 𝑥) 𝑎(𝑏 − 𝑦) b[𝑎(𝑏 − 𝑦)/𝑏 − 𝑥]
𝑝(𝑥, 𝑦) = 𝑧1 𝑎𝑏 𝑎𝑏 𝑎𝑏

𝑎(𝑏 − 𝑦) 𝑏𝑥 𝑏(𝑎𝑦/𝑏 − 𝑥)
+ 𝑧2 (−1)

𝑎𝑏 𝑎𝑏 𝑎𝑏

𝑏𝑥 𝑎𝑦 b[𝑎(𝑏 − 𝑦)/𝑏 − 𝑥] 𝑎𝑦
+ 𝑧3 (−1) + 𝑧4𝑎𝑏 𝑎𝑏 𝑎𝑏 𝑎𝑏

𝑏(𝑎 − 𝑥) 𝑏(𝑎𝑦/𝑏 − 𝑥)
𝑎𝑏 𝑎𝑏

(8.04)

Perf orming the operations indicated,  simplif y-
ing numerators with denominators,  and reducing 
similar terms,  one finds:

𝑝(𝑥, 𝑦) = (1⁄𝑎2𝑏) [𝑥2  𝑦 (−𝑧1− 𝑧2+ 𝑧3+ 𝑧4) − 
(𝑎⁄𝑏) 𝑥𝑦2(𝑧1− 𝑧2− 𝑧3 + 𝑧4) +

+𝑏𝑥2(𝑧1+ 𝑧2) + 𝑎𝑥𝑦(3𝑧1− 𝑧2− 𝑧3− 𝑧4) + 
(𝑎2⁄𝑏) 𝑦2  (𝑧1+ 𝑧4) −

−2𝑎𝑏𝑥𝑧1  − 2𝑎2𝑦𝑧1  + 𝑎2𝑏𝑧1]

(8.05)

This polynomial has eight terms,  with their re-
spective coef ficients,  in

𝑥2𝑦, 𝑥𝑦2,  𝑥2,  𝑥𝑦, 𝑦2,  𝑥, 𝑦, 𝑥0𝑦0

It is,  theref ore,  an isotropic polynomial.

The f ormula in (5.01) allows us to write:

𝑝(𝑥, 𝑏) = 𝑧3(𝑥⁄𝑎)2 + 𝑧4(1−
𝑥⁄𝑎)2  , 

on side 𝑃3𝑃4

𝑝(0, 𝑦) =  𝑧1(1− 𝑦⁄𝑏)2 + 
𝑧4(𝑦⁄𝑏)2  , 

on side 𝑃4𝑃1

𝑝(𝑥, 𝑏𝑥⁄𝑎) = 𝑧1(1 − 𝑎⁄𝑥)2  

(1−2𝑥⁄𝑎) +𝑧3𝑥2(2𝑥⁄𝑎 −1) , 
on the diagonal 𝑃1𝑃2

In the center of the rectangle is 𝑥 = 𝑎⁄2 ,  𝑦 𝑏⁄2
and thus 𝑝(𝑎/2, 𝑏⁄2) = 0
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in the center of the rectangle the Lagrange in-
terpolator polynomial cancels out.

9. Another formula for the rectangle 𝑃1,  𝑃2,  
𝑃3,  𝑃4. An interpolation formula unequivocally de-
termined by the four vertices of any quadrilateral, 
it must have four coefficients. This could be in the 
form

𝑧 = 𝑐00  + 𝑐10  ∙ 𝑥 + 𝑐01  ∙ 𝑦 + 𝑐11  ∙ 𝑥𝑦

if we ask that the interpolation be isotropic, 
that is, that it does not attribute powers to one of 
the two variables that the other does not have, in 
the formula. Thus, as already explained, we have the 
Vandermonde determinant.

𝑧(𝑥, 𝑦) 1 𝑥 𝑦 𝑥𝑦

𝑧1 1 𝑥1 𝑦1 𝑥1𝑦1

𝑧2 1 𝑥2 𝑦2 𝑥2𝑦2 = 0

𝑧3 1 𝑥3 𝑦3 𝑥3𝑦3

𝑧4 1 𝑥4 𝑦4 𝑥4𝑦4

It is easily calculated that 𝑝(𝑥, 𝑦) reproduces
the values of  𝑓(𝑥, 𝑦) in the f our corners of  the rect-
angle of  the figure. In f act,  by substituting the corre-
sponding coordinates in f ormula (8.04) or its equiv-
alent f orm (8.05),  and doing the indicated algebraic 
operations,  we find that

𝑝(0, 0) = 𝑧1  = 𝑓(0, 0)     𝑝(𝑎, 0) = 𝑧2  =  𝑓(𝑎, 0)

𝑝(𝑎, 𝑏) = 𝑧3  = 𝑓(𝑎, 𝑏)   𝑝(0, 𝑏) = 𝑧4  =  𝑓(0, 𝑏)

On the points of the perimeter and on the di-
agonals, we have:

   𝑎) on 𝑃1𝑃2: 𝑦= 0         ;        𝑏) on 𝑃2𝑃3: 𝑥= 𝑎        ;         
𝑐) on 𝑃3𝑃4: 𝑦= 𝑏        ;         𝑑) on 𝑃4𝑃1: 𝑥 = 0

𝑒) on 𝑃1𝑃3; 𝑦= 𝑏𝑥⁄𝑎   𝑓) on 𝑃2𝑃4   ∶ 𝑦 = 𝑏(1 − 𝑥⁄𝑎)

Therefore, the interpolation formula (8.04) 
adopts the following expressions:

𝑝(𝑎, 0) =  𝑧1(1 − 𝑥⁄𝑎)2  + 
𝑧2(𝑥⁄𝑎)2

,  on side 𝑃1𝑃2

𝑝(𝑎, 𝑦) = 𝑧2(1 − 𝑦⁄𝑏)2  +  
𝑧3(𝑦⁄𝑏)2 ,  on side 𝑃2𝑃3

5.     THE LAGRANGE FORMULA IN VARI-
OUS DIMENSIONS

In the study of many issues and problems of 
geography, meteorology, economics, demography, 
and other real-world sciences, the situation arises 
in which several data (in general, m data) are known 
for each of N points, points in which a variable , 
which depends on those data, takes known values; 
and it is a question of determining the value that  
has in another point—different from those already 
known—from their values at known points. For 
example, it would be the case of a geographer who 
studies the distribution of ambient temperatures in 
a country, and has the value of that temperature in 
ten places  (𝑁 = 10),  and for each place he knows 
five data (𝑚 = 5) on which its temperature depends:
latitude,  height above sea level,  relative humidity,  
rainf all and sunshine.

The geographer’s problem would be to deter-
mine by numerical calculation the average annual 
temperature in another location of that country, dif-
ferent from the cities mentioned.

In this paper, we present a method to construct 
a version of the Lagrange formula in a space of sev-
eral dimensions (in general, of  dimensions) and to 
use it in numerical calculation with real variables.

To say it formally: We have  points in a space  
ℝ𝑚  f ormed by m real variables 𝑥1,  𝑥2,  …, 𝑥𝑚. Such 
points are 𝑃1(𝑥1

1,  𝑥1
2,  … ,  𝑥1

𝑚),  … 𝑃𝑖 (𝑥𝑖
1,  𝑥𝑖

2,  … ,  𝑥𝑖
𝑚),  

… ,  𝑃𝑁(𝑥𝑁
1 ,  𝑥𝑁

2 ,  … ,  𝑥𝑁
𝑚) and belong to a space that is 

endowed with the usual Euclidean metric. At those 
points,  and in a continuous and compact region D 
containing them, a function is defined

𝑢(𝑥1,  𝑥2,  … ,  𝑥𝑚)
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which is continuous and differentiable, and 
which adopts N (known) numerical values.

𝑢𝑖  =  𝑢(𝑥𝑖
1,  𝑥𝑖

2,  … ,  𝑥𝑖
𝑚) para 𝑖𝜖{1, 2, … ,  𝑁}

In the space ℝ𝑚 a “topological simplex” is the 
name of  a hyper-triangle (or hyperpolyhedral) 
which has m dimensions, is convex, and which has 𝑚
+ 1 vertices and 𝑚 + 1 hyper-f aces (hyper-planes).
For example: in the usual three-dimensional Euclid-
ean space,  it is 𝑚 = 3 and, a simplex in it, it is a tetra-
hedron (regular or not).

With the N points 𝑃1,  𝑃2,  … ,  𝑃𝑁 as vertices,  it 
is possible to construct a number (cardinal) of  sim-
plices

� 𝑁 � =  𝑁!⁄(𝑚 + 1)! (𝑁 − 𝑚 − 1)! = 𝜇(𝑁, 𝑚)𝑚 + 1

Supposing, of course, that 𝑁 > 𝑚.

In addition, given one of the points 𝑃𝑖 (any but 
fixed),  it is possible to construct f rom it a number of  
simplices

�𝑁 − 1 �  =  (𝑁 − 1)!/𝑚!   (𝑁 − 1 − 𝑚)! = 𝑣(𝑁, 𝑚)𝑚

using the 𝑁 − 1 remaining  points as vertices
of  these simplices.

Note: Dividing 𝜇⁄𝑣 results 𝜇⁄𝑣 =  𝑁⁄(𝑚 + 1);   in 
; and since  𝑁 ≥ 𝑚 + 1, the result in turn is that 𝜇 ≥ 𝑣.

Each of these latter simplices is identified by 
its vertices in the form

𝑃1𝑃𝑗𝑖1  𝑃𝑗𝑖2  … 𝑃𝑗𝑖𝑚  being each 𝑗𝑖ℎ ≠ 𝑖

and its Euclidean hyper-volume will be repre-
sented as

𝑉(𝑃𝑖𝑃𝑗𝑖1  … 𝑃𝑗𝑖𝑚)

where 𝑗𝑖1, 𝑗𝑖2, … ,  𝑗𝑖𝑚 is an ordered permuta-
tion extracted f rom the ordered sequence

{1, 2,  … ,  𝑖 − 1, 𝑖 + 1, … ,  𝑁}

in which the subscript “i” of 𝑃𝑖 has been de-
leted.

Multidimensional Analytic geometry teaches 
that

𝑥𝑖
1 𝑥𝑖

2 …. 𝑥𝑖
m 1

𝑉(𝑃𝑖 𝑃𝑗𝑖1  … 𝑃𝑗𝑖𝑚) =  
1

—
𝑚!

𝑥1
𝑗𝑖1 𝑥2

𝑗𝑖1 …. 𝑥m
𝑗𝑖1 1

⋮ ⋮ ⋮ ⋮ ⋮

𝑥1
𝑗𝑖𝑚 𝑥2

𝑗𝑖𝑚 …. 𝑥m
𝑗𝑖𝑚 1

whose determinant is order (𝑚 + 1) × (𝑚 + 
1). In each particular case, this determinant can be 
positive or negative, but it will never be null. That is: 
𝑉(𝑃𝑗𝑃𝑗𝑖1 … 𝑃𝑗𝑖𝑚) ≷ 0,  but it always holds that 𝑉 ≠ 0. 

To interpolate the variable  in a point

𝑃(𝑥1,  𝑥2,  … ,  𝑥𝑚)

of ℝ𝑚, other than the points 𝑃𝑖 the f unction 
𝑢(𝑥1,  𝑥2,  … 𝑥𝑚) can be estimated using the placement 
polynomial

��
𝑉(𝑃 𝑃𝑗𝑖1 … 𝑃𝑗𝑖𝑚)

𝑢(𝑥1,  … 𝑥𝑚) ≃ 𝑢𝑖= 𝑝(𝑥1,  𝑥2,  … ,  𝑥𝑚)
𝑉(𝑃𝑖𝑃𝑗𝑖1 … 𝑃𝑗𝑖𝑚)

This is the general formula for interpolating the 
function sought. It can be called the Lagrange formula 
in m dimensions (or in ℝ𝑚). The polynomial 𝑝(𝑥′,  … 
𝑥𝑚) is an algebraic,  nonhomogeneous f unction of  de-
gree 𝑁 − 1 (or less, in certain exceptional cases).

Strictly speaking, the above formula should be 
written as

𝑢(𝑥1,  … ,  𝑥𝑚) =  𝑝(𝑥′,  … 𝑥𝑚) + 𝜖(𝑥′,  … ,  𝑥𝑚)

where 𝜖(𝑥′,  … ,  𝑥𝑚) is the interpolation error it 
is of  the f orm:

𝜖(𝑥′, …, 𝑥𝑚)= 
𝑁

�
𝑖= 1

𝑣
�

𝑗𝑖𝑚, …𝑗𝑖𝑚

[𝑉(𝑃𝑖𝑃𝑗𝑖1… 𝑃𝑗𝑖𝑚) 𝑉(𝑃 𝑃𝑗𝑖1… 𝑃𝑗𝑖𝑚]∅ (𝑃)⁄𝑁!

 an expression that quickly tends towards 
zero when N increases,  that is,  when more and 
more points are taken as the basis f or doing the in-
terpolation.
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6.     AN ELEMENTARY EXAMPLE IN ℝ𝟐

We have the four points known in the plane ℝ2, 
given by the coordinates

𝑃1(0, 0)            𝑃2(𝑎, 0)

𝑃3(𝑎, 𝑏)          𝑃4(0,  𝑏)

And it is known that a continuous variable 
across the plane (e.g. temperature, topography, 
population density, etc.) takes the known values at 
those points

𝑧1                𝑧2

𝑧3                𝑧4

Figure 7

This refers to valuing z at the point

𝑃(𝑥, 𝑦)

In this case (ℝ2,  𝑚 = 2) the simplices that are
necessary and suf ficient to calculate z in P, are four 
triangles

𝑃1𝑃2𝑃3         ,       𝑃1𝑃2𝑃4          ,        𝑃2𝑃3𝑃4          ,       
𝑃3𝑃4𝑃1

whose areas measure:

𝐴123= 𝑎𝑏⁄2  ,   𝐴234= 𝑎𝑏⁄2  ,    𝐴341= 𝑎𝑏⁄2

,    𝐴412= 𝑎𝑏⁄2

(These areas correspond to what in the previ-
ous section were designated as “hypervolumes” and 
the four triangles are simplices in the plane).

From the point 𝑃(𝑥, 𝑦) we can f orm f our tri-
angles (which are simplices in ℝ2) with the polygon 
𝑃1𝑃2𝑃3𝑃4 Their areas are::

𝐴012  =  𝑎 ∙ 𝑦⁄2       𝐴023  =  𝑏(𝑎 − 𝑥)⁄2

𝐴034  =  𝑎(𝑏 − 𝑦)2       𝐴041  =  𝑏 𝑥)⁄2

And so, the placement polynomial is

𝑝(𝑥, 𝑦) = 
𝑖= 4

�
𝑖= 1

= �
𝑗≠𝑖
𝑘≠𝑖

𝐴0𝑗𝑘

𝑖𝑗𝑘

𝐴023 𝐴034 𝐴034 𝐴041 𝐴041 𝐴012 𝐴012 𝐴023=  𝑧1 + 𝑧2  + 𝑧3 + 𝑧4  
𝐴123 𝐴134 𝐴234 𝐴241 𝐴341 𝐴312 𝐴412 𝐴423

And the formula for interpolating values of 𝑧 in
points of  the rectangle in the drawing,  is:

1
𝑧(𝑥, 𝑦) 𝑝(𝑥, 𝑦) — [𝑧1(𝑏 𝑦)(𝑎 𝑥) 𝑧2𝑥(𝑏 𝑦) 𝑧3𝑥𝑦 𝑧4(𝑎 𝑥)𝑦]

𝑎𝑏

that is to say, a convex combination of the four 
values 𝑧1,  𝑧2,  𝑧3,  𝑧4.

7.     CALCULATION ALGORITHM

The procedure for calculating interpolated val-
ues in a region of a real space of several dimensions 
(ℝ𝑚) can follow the following algorithm.

The problem is considered in a space of m di-
mensions, where

a. N points 𝑃1,  𝑃2,  … ,  𝑃𝑁, of known coordinates.

b. The N numerical values that have a variable 
u in those points, and which are:  𝑢1,  … , 𝑢𝑁 respec-
tively.

And it is a matter of calculating the value that 
the variable u en un punto P adopts (approximate, 
or exact) at a point N other than the  given points.

Procedure:
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1. Enter the 𝑁 × 𝑚 numerical coordinates of 
the points 𝑃𝑖:

𝑥1,  𝑥1
2,  … 𝑥1

𝑚; 𝑥1
2,  𝑥2

2,  … ; 𝑥2
𝑚; … . ; 𝑥𝑁

1 ,  𝑥𝑁
2 ,  … ,  

𝑥𝑁
𝑚

of the N points. They are known data.

2. Enter the N values (also known)

𝑢1,  𝑢2,  … ,  𝑢𝑁

3. Take 𝑃1 and f orm the �𝑁 − 1 �𝑚  =  𝑣,  body 
simplices of dimension  𝑚,  which can be constructed 
with the remaining 𝑁 −1 points. They will be called 
(𝑃1𝑃𝑗11𝑃12 … 𝑃𝑗𝑚1),  … ,  (𝑃1𝑃𝑗11𝑃12,  … ,  𝑃𝑗1𝑚), where the 
subscripts 𝑗1𝐾

 ≠ 1 and each one adopts the values in 
the collection {1, 2,  … ,  𝑁} omitting the value 1.

4. Calculate the respective hypervolumes us-
ing the determinant that was presented above.

5. Form and numerically calculate the 𝑣 quo-
tients

𝑉(𝑃𝑃𝑗11 … 𝑃𝑗1𝑚) ÷ 𝑉(𝑃1𝑃𝑗11 … 𝑃𝑗1𝑚)

and multiply them together. The numerical re-
sult is 𝑞1.

6. Take 𝑃2,  𝑃3,        … ,  𝑃𝑁    successively and or-
derly,  and do each one the three steps,  3,  4 and 5. 
The respective results are 𝑞2,  𝑞3,  … , 𝑞𝑁.

7. Construct and calculate the sum numeri-
cally

𝑞1𝑢1  + 𝑞2𝑢2  + ⋯ + 𝑞𝑁𝑢𝑁

8. The interpolated value sought is

𝑢(𝑃) ≅ 𝑞1𝑢1  + ⋯ + 𝑞𝑁𝑢𝑁

8.     CONCLUSIONS

 - The problem of interpolating numerical 
values in tabular functions in regions of two or more 
variables remains a relevant problem, despite the 
current availability of manual calculators and high-
speed computers.

 - In the common literature on numerical 
analysis there are no algorithms that can be used for 
this purpose, unlike those that occur with functions 

of a single variable, for which there are numerous 
interpolation formulas, such as the Lagrange formu-
la utilized in this document.

 - The Lagrange formula in 1 dimension is 
used to calculate or estimate values 𝑝(𝑥) of a f unc-
tion of  1 independent variable whose numerical 
values are known in several points of  𝑥, which are 
𝑢(𝑥1),  𝑢(𝑥2),  … ,  (𝑥𝑁). The formula expresses 𝑓(𝑥)
other than those known,  such as 𝑥 other than those
known,  such as

𝑁
�
𝑖= 1

(𝑥−𝑥1) … (𝑥−𝑥𝑖−1) (𝑥−𝑥𝑖+1) … (𝑥−𝑥𝑁)
𝑝(𝑥)=  𝑢(𝑥𝑖)(𝑥i−𝑥1) … (𝑥i−𝑥𝑖−𝑁) (𝑥i−𝑥𝑖+1) … (𝑥i−𝑥𝑁)

where the values of 𝑢(𝑥𝑖) are obtained by an 
explicit computable f ormula,  or are observed em-
pirical measurements.

 - In the case of plane ℝ2, if we have the values 
𝑧1,  𝑧2,  𝑧3 and 𝑧4 of  a dependent variable (or values 
observed empirically) at points 𝑃1,  𝑃2,  𝑃3,  𝑃4, a func-
tion of that same variable at another point 𝑧(𝑥, 𝑦)
dif f erent f rom the ones known,  with the f ormula de-
duced here,  can be estimated by

𝐴023  ∙ 𝐴034 𝐴034 ∙  𝐴041𝑧(𝑥, 𝑦) = 𝑧1 + 𝑧2  
𝐴123 ∙  𝐴134 𝐴234 ∙ 𝐴241

𝐴041 ∙ 𝐴012 𝐴012  ∙𝐴023+ 𝑧3 + 𝑧4  
𝐴341 ∙ 𝐴312 𝐴412 ∙ 𝐴423

where each 𝐴𝑖𝑗𝑘 is the positively oriented area 
of  the triangle 𝑃𝑖 𝑃𝑗 𝑃𝑘  which is given by the deter-
minant.

1 1       xi      yi
𝐴i𝑗𝑘= — 1       xj      yj2

1       xk     yk

 - In the case of N points 𝑃1,  𝑃2,  … . ,  𝑃𝑁 of  
known coordinates,  in a space ℝ𝑚 of m dimensions, 
encompassed by a continuous variable, u, depen-
dent on m variables and whose numerical values

𝑢1  =  𝑢(𝑃1) ,  𝑢2  =  𝑢(𝑃2),  … ,  𝑢𝑁  =  𝑢(𝑃𝑁)

the value of u can be calculated or estimated at 
its point p neighboring those known by the formula
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𝑢(𝑃) =  𝑞1  ∙ 𝑢1  + 𝑞2  ∙ 𝑢2  + ⋯ + 𝑞𝑁𝑢𝑁

where
𝑣

�
𝑘= 1

𝑉(0, 𝑗1,  … ,  𝑗𝑚)
𝑞ℎ  = 

𝑉(ℎ, 𝑗1,  … ,  𝑗𝑚)

and 𝑉(0, 𝑗1,  … ,  𝑗𝑚) is the volume of  a simplex 
(of  dimension m) formed by the point 𝑃ℎ where it is 
being estimated and a combination of  m points tak-
en from the known N points. There are � 𝑁

𝑚�  =  𝑣 of 
these combinations. Each simplex is of  m dimension 
and has 𝑚 + 1  vertices and 𝑚 + 1 f aces.

 - The volume of each simplex 𝑉𝑘 mentioned,  
f ormed by the points 𝑃𝑘,  𝑃𝑗1,  … ,  𝑃𝑗𝑚  and being 𝑥𝑖1,  
𝑥𝑖2,  … ,  𝑥𝑖𝑚 the coordinates (or components) of  each 
point 𝑃𝑖 , is given by the determinant

𝑥𝑘1 𝑥𝑘2 …. 𝑥𝑘𝑚 1

1
—
𝑚!

𝑥11 𝑥12 …. 𝑥1𝑚 1

⋮ ⋮

𝑥𝑚1 𝑥𝑚2 …. 𝑥𝑚𝑚 1
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