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REMOTE PROTEIN HOMOLOGY DETECTION USING 
PHYSICOCHEMICAL PROPERTIES

   Óscar Bedoya1

ABSTRACT
A new method for remote protein homology detection, called CDA (Characteristic Distribution Analysis), is 

presented. The CDA method uses the distributions of physicochemical properties of amino acids for each protein. 
Given the training sequences of a SCOP (Structural Classification Of Proteins) family, a characteristic distribution is 
achieved by averaging the values of the distributions of its proteins. The hypothesis in this research is that each protein 
family F has a characteristic distribution that separates its sequences from the rest of the proteins in a dataset. A set 
of 72 physicochemical properties was selected to create different characteristic distributions of the same family. Each 
characteristic distribution is used as a classifier. Finally, a Naive Bayes classifier is trained to combine the information of 
the individual classifiers and obtain a better decision. We found that each family has a set of physicochemical properties 
that allow the discrimination of their sequences better. CDA achieves a True Positive (TP) rate of 0,793, a False Positive 
(FP) rate of 0,005, and a Receiver Operating Characteristic (ROC) area of 0,918. The CDA method outperforms some of 
the current strategies such as SVM-PCD and SVM-RQA. 

KEYWORDS: Remote Homology Detection, Physicochemical Properties, SCOP Family.

DETECCIÓN DE HOMÓLOGOS REMOTOS USANDO 
PROPIEDADES FISICOQUÍMICAS 

RESUMEN
En este artículo se presenta un nuevo método para la detección de homólogos remotos en proteínas llamado CDA 

(Análisis de Distribución de Característica). El método CDA utiliza distribuciones de las propiedades fisicoquímicas de 
los aminoácidos para cada proteína. Dadas las secuencias de entrenamiento de una familia SCOP (Clasificación Estruc-
tural de Proteínas), se calcula su correspondiente distribución característica promediando los valores de las distribucio-
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nes para las proteínas que la componen. La hipótesis en esta investigación es que cada familia de proteínas F tiene una 
distribución característica que separa sus secuencias del resto de las proteínas en un conjunto de datos. Se seleccionó un 
conjunto de 72 propiedades fisicoquímicas para crear diferentes distribuciones características de la misma familia. Cada 
distribución característica se usa como un clasificador de familias SCOP. Por último, se utiliza una clasificador Bayesiano 
para combinar la información de los clasificadores individuales y obtener una mejor decisión. Encontramos que cada 
familia tiene un conjunto de propiedades fisicoquímicas que permiten una mejor discriminación de sus secuencias. El 
método CDA alcanza una tasa de aciertos positivos de 0,793, una tasa de falsos positivos de 0,005 y un puntaje ROC de 
0,918. El método propuesto mejora la precisión de algunas de las estrategias existentes tales como SVM-PCD y SVM-RQA. 

PALABRAS CLAVE: detección de homólogos remotos, familia SCOP, propiedades fisicoquímicas.

DETECÇÃO DE HOMÓLOGOS REMOTOS USANDO 
PROPRIEDADES FISICOQUÍMICAS

RESUMO
Neste artigo apresenta-se um novo método para a detecção de homólogos remotos em proteínas chamado CDA 

(Análises de Distribuição Característica). O método utiliza distribuições das propriedades fisicoquímicas dos aminoá-
cidos. Dada uma família SCOP calcula-se sua correspondente distribuição característica promediando os valores das 
distribuições para as proteínas que a compõem. A hipótese nesta investigação é que cada família F tem uma distribuição 
característica que permite diferenciar as sequências em F do resto de proteínas. Ao existir muitas propriedades, ao redor 
de 554 no AAindex, selecionou-se um conjunto de 72 índices para criar as distribuições. Cada distribuição caracterís-
tica usa-se como um classificador de famílias SCOP. Por último, utiliza-se um classificador Bayesiano para combinar a 
informação dos classificadores individuais criados a partir das distribuições. O método CDA atinge uma taxa de acertos 
positivos de 0,793, uma taxa de falsos positivos de 0,005 e uma pontuação ROC de 0,918. O método proposto melhora a 
exatidão de algumas das estratégias existentes tais como SVM-PCD e SVM-RQA.

PALAVRAS-CHAVE: detecção de homólogos remotos, família SCOP, propriedades fisicoquímicas.

1.     INTRODUCTION

Remote homology detection identifies 
structural homology in evolutionarily related 
proteins that present low sequence similarity. It can 
be defined as a process that takes a target protein 
and retrieves proteins that are similar in function 
but distant in sequence. Homology detection can be 
a difficult task because proteins in the search space 
share low sequence similarities with the target 
domain, and the relationship has to be measured at 
3D structural and/or functional levels (Bedoya and 

Tischer, 2014). Function and structure are generally 
more conserved during evolution than the amino 
acid sequence. Thus, proteins that do not exhibit 
high sequence similarity could still be functionally 
and structurally related (Yang et al., 2008).

The formal definition of remote homology 
refers to protein sequences with less than 25% 
sequence identity that exhibit a similar function 
(Homaeian et al., 2007; Huang and Bystroff, 2006). 
However, remote homology detection can also be 
defined as the problem of taking a target protein P 
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and retrieving proteins in the same superfamily of P 
that belong to a different family. Figure 1 shows an 
example of remote homology. The sequence identity 
and structural similarity of domains 1emy (Elephas 
maximus) and 1it2 (Hagfish deoxy hemoglobin) were 
compared. The sequence identity is the number of 
matching residues in a sequence alignment between 
two domains. Structural alignment establishes the 
homology between two polymer structures based 
on their three-dimensional conformation. SSAP 
(Sequential Structure Alignment Program) (Orengo 
and Taylor, 1996) was used to calculate the structural 
alignment. SSAP gives the RMSD (Root Mean Square 
Deviation) and SSAP score as outputs. The RMSD is a 
measure of the divergence of two aligned structures, 
and the SSAP score measures the structural 
alignment, where 100 is the highest structural 
similarity. A sequence identity of 16%, a SSAP score 
of 84,97 and an RMSD of 2,13 were obtained. The 
results show that these two domains share high 
structural similarity and a low sequence identity and 
thus can be considered remote homologs.

Figure 1. Two protein remote homologs

  1emy (Elephas maximus)

1it2 (Hagfish deoxy 

hemoglobin)

Sequence identity SSAP score RMSD

16,0 84,97 2,13

Several methods have been proposed for 
remote homology detection (Jaakkola et al., 2000; 
Hou et al., 2003; Goldstein, 2004; Dong et al., 2006; 
Gao, 2006; Yang et al., 2008; Webb-Robertson et 

al., 2010; Muda et al., 2011; Chitraranjan et al., 
2011). However, an effective strategy is still needed. 
Existing methods may still be confused by poor 
similarity between the amino acid sequences even 
though they are closely related in function (Huang 
and Bystroff, 2006). SVM I-sites (Hou et al., 2003) 
is a remote homology detection method. It uses the 
I-site library to generate a score by submitting every 
subfragment of an unknown target sequence to the 
log-odd matrix representing each I-site. Because 
there are motifs of different sizes, the similarity 
scores of different clusters of I-sites are not directly 
comparable. Thus, there is a need to map each score 
to a range of comparable values. Hou et al. (2003) 
proposed to use a confidence curve for each specific 
cluster of I-sites. A confidence curve maps similarity 
scores to the probability of the correct local 
structure based on a jack-knife test. The confidence 
of a fragment prediction is the probability that 
a sequence segment with a given score has the 
structure predicted by the motif. To predict the 
local structure of any unknown protein sequence, 
the sequence patterns (profiles) for each of the 263 
clusters of the I-sites library are used to score all 
subfragments of the unknown target sequence. A 
feature vector for a protein P in Huo et al. (2003) is 
calculated as the sum of confidence values for 263 
motifs in all subfragments in P. 

Another remote homology detection method 
is presented by Gao (2006). It uses the γ-matrix 
of the HMMSTR model. The well-known γ-matrix 
(Rabiner and Biing-Hwangh, 1986) has 281 columns 
representing the Markov states of HMMSTR (Hidden 
Markov Model for protein STRucture) and N rows, 
where N is the length of the protein P submitted 
to the model. Gao (2006) calls every row of the 
γ-matrix a γ-vector. Then, γ-vectors are clustered 
to determine the most representative vectors in a 
training data set. k-means is used as the clustering 
algorithm, and the centroids are taken as the 
representative γ-vector set. Finally, each γ-vector of 
a protein P in a training set is mapped to the nearest 
cluster and thus every protein is represented as 
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a chain of symbols indicating the sequence of 
mapped clusters. The whole training set of proteins 
is indexed using a suffix tree to make the querying 
process faster. 

Muda et al. (2011) address remote homology 
detection and fold recognition problems. A two-
layer classifier is proposed. In the first level, an SVM 
(support vector machine) classifier is used to detect 
remote protein homology. The classification is 
performed based on one-versus-all binary classifiers. 
The feature vector used to train the SVM is based on 
the numerical values of the AAindex (Kawashima 
et al., 2008). Scaling is performed over numerical 
data to avoid dominance during the classification 
process. SVM-PCD (Webb-Robertson et al., 2010) 
uses the concept of physicochemical property 
distributions for protein homology detection. Every 
protein is represented as the distribution of its 
4-mers, the average of the physicochemical values in 
a 4 amino acid window. A distribution of 18 values 
is obtained for each index in the AAIndex database. 
Webb-Robertson et al. (2010) propose PCD(531), 
PCD(181), and PCD(61), which take 531, 181, and 
61 indices of the physicochemical properties in the 
AAIndex, respectively. The values considered in 
each case are concatenated and used to train an SVM 
for each family.

In this paper, a new method for remote 
protein homology detection, called Characteristic 
Distribution Analysis (CDA), is presented. The CDA 
method is based on obtaining a distribution of the 
physicochemical properties of amino acids for 
each protein. A characteristic distribution is built 
with the training sequences of each SCOP family. 
The hypothesis of this research is that each family 
F has a characteristic distribution that separates 
its sequences from the rest of the proteins in a 
dataset. There are 554 physicochemical properties 
in the AAindex. In this research, 72 physicochemical 
properties commonly referred are used. The 
methodology that is used in this research makes 
it possible to try every physicochemical property 
independently from the others, and thus, the 

physicochemical property that discriminate better 
the sequences in a specific protein family can be 
obtained. In addition, a final decision is also obtained 
when a Naïve Bayes classifier is used.

2.     METHODS

2.1. Position weighted sliding 
window

The first step in the CDA method is transforming 
the amino acid sequence into the physicochemical 
values defined in a specific index. Every index 
assigns a value for each of the 20 amino acids. For 
example, the atom-based hydrophobic moment is 
defined by the 20 values shown in Table 1. As can be 
observed, the highest hydrophobic moment belongs 
to the Arginine (R) amino acid and the lowest to the 
Alanine (A). Physicochemical properties are included 
in remote homology detection due to the hypothesis 
that they are mostly conserved during evolution 
(Grigoriev and Kim, 1999; Yang et al., 2008). 

TABLE 1. ATOM-BASED HYDROPHOBIC MOMENT 

INDEX

A R N D C Q E G H I

0,0 10,0 1,3 1,9 0,17 1,9 3,0 0,0 0,99 1,2

L K M F P S T W Y V

1,0 5,7 1,9 1,1 0,18 0,73 1,5 1,6 1,8 0,48

In this paper, a position weighted sliding 
window of size 5 is used instead of averaging the 
values at each position. We use the same strategy 
proposed by Bedoya and Tischer (2014). According 
to their strategy, the weight in each position 
indicates the contribution to the representative 
value of the window and is assigned to the amino 
acid in its center. Given the five values (v1,v2,v3,v4,v5) 
of a physicochemical property for the amino acids 
(ai-2, ai-1, ai, ai+1, ai+2), the contribution value c of the 
window assigned to the amino acid ai is calculated 
as in Equation (1). 
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  c = vi–2*0,05789+ vi–1 *0,24450+ vi 

*0,39521 + vi+1 *0,24450+ vi+2 *0,05789
(1)

The size of the window tries to capture 
local interactions between amino acids that are 
actually closed neighbours. The size of the window 
considered that the most important 3D relationships 
between amino acids occur in a local range. Given an 
amino acid sequence of n residues and the 5-size 
sliding window, a total of n-4 contribution values are 
obtained. The set of values obtained from the sliding 
windows of the whole protein is called a Contribution 
Vector (CV) (Bedoya and Tischer, 2014).

2.2. Selection of physicochemical 
properties

There are 554 physicochemical properties in 
the AAindex. According to Yang et al. (2008) and 
Webb-Robertson et al. (2010), there are indices that 
reflect either functional or structural characteristics 
of a specific protein family. For instance, in SVM-
RQA (Yang et al., 2008) the best indices for the 
1.4.1.3 SCOP family (c-Myb DNA-binding domain) 
are found. The 1.4.1.3 family contains hydrophobic 
side chains and helical proteins. The most adequate 
indices for this family are pK(-COOH), polarity, 
alpha-helix propensity derived from designed 
sequences and the normalized frequency of the 
left-handed alpha-helix. The first two indices are 
related to the hydrophobicity property and the 
last two are structural related indices. In SVM-PCD 
(Webb-Robertson et al., 2010) the 531 indices in the 
AAindex were used. They also reduced the number 

of indices based on a correlation analysis and 
showed that no gain in accuracy is achieved beyond 
the 61 indices used in SVM-PCD(61). 

In this paper, 72 indices were selected 
considering the results reported by Yang et al. 
(2008) and Webb-Robertson et al. (2010). The list of 
the selected indices is shown in Table 2. The goal of 
using a considerable amount of indices is to detect 
which ones are most appropriate to be used in the 
CDA analysis. 

2.3. Obtaining a distribution for each 
protein sequence

The next step in the CDA analysis is to obtain 
the distribution of the contribution vectors for each 
protein. The decision of obtaining a distribution is 
related to transform every amino acid sequence into 
a fixed-size set of values. In this paper, 20 values are 
used to describe the distribution of the values in the 
contribution vector. Thus, proteins of different sizes 
become comparable because they are all expressed 
as a set of 20 values. 

First of all, every value in the contribution 
vector is normalized to the mean and standard 
deviation associated with the index representing 
a physicochemical property by following the same 
strategy proposed by Bedoya and Tischer (2014). 
The mean and deviation of an index are calculated 
by averaging the 3200000 possible contribution 
values that might be obtained from a 5-size window. 
Equations (2) and (3) show the calculation of the 
mean and deviation, respectively.

�20 (vi*0,05789 + vj *0,24450 + vk *0,39521 + vl *0,24450 + vm *0,05789)
(2)i,j,k,l,m=1μ =

3,2 ×106

�20 �(vi*0,05789 + vj *0,24450 + vk *0,39521 + vl *0,24450 + vm *0,05789)–�
2

(3)i,j,k,l,m=1σ =
3,2 ×106–1
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where vi, vj, vk, vl, and vm are the values 
of a specific index. Each summation goes from 
one to 20, indicating the 20 possible values of a 
physicochemical property.

Mean and deviation are calculated for each 
of the 72 indices. For example, the atom-based 
hydrophobic moment index have a mean of 1,8221 
and a deviation of 1,1948. Once the mean and 
deviation are calculated, each value in a contribution 
vector is normalized by using Equation (4). The 
set of normalized values of a protein is called 
Normalized Contribution Vector (NCV).  

CVij – μjNCVij  = (4)
σj

where CVij is the i-th value in the contribution 
vector using the j-th index, µj is the mean of the 
j-th index and σj is the standard deviation of the 
j-th index. Normalizing to the mean and deviation 
transforms values in CV to values thar are mostly 
in the range from -4σ to 4σ. The next step is taking 
the normalized values and turning them into a 
distribution. This is done by a binning process. 
Binning the range of the normalized values consists 
of calculating the frequency for each bin, starting 
from -1,8 and taking intervals of 0,3 up to 3,9. The 
binning process produces 20 frequency values. 
Finally, the frequency values are normalized by 
dividing each value by the number of values in the 
normalized contribution vector. 

Figure 2 shows the distributions for two 
sequences. Families 1.27.1.1 and 1.36.1.5 were 
selected to observe the difference between the 
distributions of two proteins when the atom-
based hydrophobic moment index is used. It is 
expected that the distributions of sequences 
that belong to different families exhibit clearly 
different shapes.

2.4. Obtaining a Characteristic curve 
for each family

The hypothesis in this paper is that each 
family has a characteristic curve that represents 
the values of the distributions of the sequences in 
the family. A characteristic distribution for a family 
F is obtained by taking its sequences, calculating 
the distributions, and averaging the values in each 
position. We used the dataset proposed by Liao 
and Noble (2003), which has become the standard 
dataset in remote homology detection. The dataset is 
formed by 54 families, each family having a different 
amount of sequences and specific sets for training 
and testing. Details of the definitions of the dataset 
are available at http://noble.gs.washington.edu/
proj/svm-pairwise/. The training dataset available 
for each family was used to obtain its characteristic 
distribution. In addition, the 857 sequences referred 
as the test sequences in (Liao and Noble, 2003) were 
used to calculate the accuracy of the method.

Figure 3 shows the characteristic distributions 
for families 1.36.1.5, 2.1.1.1, 2.28.1.1, and 7.41.5.2. 
Atom-based hydrophobic moment index was used. 
Each characteristic distribution is obtained by 
averaging the values of the distributions in the same 
family. There are 72 characteristic distributions for 
each family (i.e., one distribution is obtained for 
each physicochemical property). It was observed 
that some indices discriminate the 54 families better 
than others. In addition, there are families that are 
difficult to be represented and only a few indices are 
able to discriminate them. 

 Figure 4 shows the characteristic distributions 
of families 1.36.1.5, 2.1.1.1, 2.28.1.1, and 7.41.5.2 
when the alpha-helix propensity derived from 
designed sequences index is used. Each specific 
physicochemical property gives a different view of 
the same family. As can be observed from Figures 3 
and 4, the 1.36.1.5 family exhibits medium values of 
hydrophobic moments and it is formed by sequences 
that show a high alpha-helix propensity.
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TABLE 2. PHYSICOCHEMICAL PROPERTIES LIST

Physicochemical property

Accessibility reduction ratio Normalized frequency of isolated helix

Aperiodic indices for beta-proteins Normalized frequency of isolated helix

Apparent partial specific volume Normalized frequency of left-handed alpha-helix 

Atom-based hydrophobic moment Normalized frequency of N-terminal helix

Average non-bonded energy per atom Normalized frequency of reverse turn, unweighted

Average non-bonded energy per residue Normalized frequency of the 2nd and 3rd residues in turn

Average relative fractional occurrence in AR(i) Normalized residue frequency at helix termini C1

Average relative fractional occurrence in AR(i-1) Normalized residue frequency at helix termini C2

Average side chain orientation angle Normalized residue frequency at helix termini N1 

Averaged turn propensities in a transmembrane helix Normalized relative frequency of bend R

Beta-helix propensity derived from designed sequences Normalized van der Waals volume 

Conformational parameter of inner helix pK (-COOH) 

Conformational preference for all beta-strands Polarity 

Delta G values for the peptides extrapolated to 0 M urea Relative frequency of occurrence

Direction of hydrophobic moment Relative population of conformational state C

Frequency of occurrence in beta-bends Relative preference value at C’ 

Helix-coil equilibrium constant Relative preference value at C1 

Hydration potential Relative preference value at N3

Hydropathy Side chain interaction parameter

Hydropathy scale based on self-information values Size 

Hydrophobic parameter Solvation free energy

Isoelectric point Spin-spin coupling constants 3JHalpha-NH

Mean fractional area loss Surface and inside volumes in globular proteins

Membrane-buried preference parameters The Chou-Fasman parameter of the coil conformation

Molecular weight The Kerr-constant increments

Negative charge Transfer energy, organic solvent/water 

Net charge Transfer free energy from vap to chx

Normalized average hydrophobicity scales Transmembrane regions of non-mt-proteins

Normalized flexibility parameters (B-values), average Value of theta(i-1)

Normalized frequency of alpha-helix van der Waals parameter R0 

Normalized frequency of alpha-helix from LG Weights for alpha-helix at the window position of -1

Normalized frequency of alpha-helix, unweighted Weights for beta-sheet at the window position of 5

Normalized frequency of beta-sheet from LG Weights for beta-sheet at the window position of -6

Normalized frequency of beta-sheet in all-beta class Weights for coil at the window position of 3

Normalized frequency of beta-sheet, unweighted Weights for coil at the window position of 4 

Normalized frequency of beta-turn Weights for coil at the window position of 6
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Figure 2. Distributions of sequences from the 1.27.1.1 and 1.36.1.5 families

Figure 3. Characteristic distributions for four families using the atom-based hydrophobic moment index
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2.5. Detecting remote homologs 

The CDA method builds a classification 
model for each family. Even though not every 
physicochemical property is appropriate for 
discriminating the 54 families, we expect that at 
least one of the indices represents each family. 
Classification of a protein P in a SCOP family is done 
by transforming P into a normalized contribution 
vector and comparing it with the characteristic 
distributions of the 54 families. The comparison 
is performed by using the Manhattan distance. 
Formally, given the normalized contribution vector 
of P, NCVp = (v1,v2,...,v20), the distance between P and 
the i-th characteristic distribution using the j-th 
physicochemical property is calculated as follows:

20
d(P,NCVij) = � �vk –NCVijk� (5)

k=1

where NCVijk is the k-th value in the 
i-th characteristic distribution using the j-th 
physicochemical property. Once the distances to the 
characteristic distributions are calculated, protein 
P is assigned to the family with the lowest distance 
(i.e., the nearest distribution).

Given a target protein P and 72 characteristic 
distributions, every physicochemical property gives 
an outcome (i.e., a classification decision). Each 
classification tries to assign P to its actual family by 
using a different physicochemical property. Because 
some of the classification decisions might coincide 
with the correct family, and some others might be 
wrong, a Naive Bayes classifier was trained to learn 
the correct family given the 72 outcomes. Figure 
5 shows the structure of the Naive Bayes classifier 
used to the family 1.27.1.1. The classification 
decision is taken based on the outcomes of the 72 
indices. It might be expected that although not all the 
outcomes matches the actual classification, at least 

Figure 4. Characteristic distributions for four families using the alpha-helix propensity derived from designed 
sequences index
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a few of them are correct and the Bayes classifier 
identifies them. The Naive Bayes classifier follows 
the conditional model p(C|F1, F2, ..., Fn) where C is 
the number of classes (i.e., the 54 families) and F1 to 
Fn are the feature variables (i.e., the outcomes from 
index1 to index72). 

Figure 5. Naive Bayes classifier

Class=Family 1.27.1.1

Outcome 
index1

Outcome 
index2

Outcome 
index72

Once the SCOP family is determined for a 
protein P, the remote homologs are identified by 
returning the sequences in the same superfamily 
but outside the predicted family.

3.    RESULTS AND DISCUSSION 

In this section, the results obtained in the 
experiments are described. First of all, we calculated 
the accuracy of having a characteristic distribution 
for each family. Then, the Naïve Bayes classifier was 
tested. The experiments were carried out by using 
two scripts. The calculation of both the distribution 
for each protein sequence in the dataset and the 
characteristic curve for each family was performed 
by using the Bio-Python programming language. 
The Naïve Bayes classifier was obtained by using 
the WEKA data mining tool (Hall et al., 2009). The 
parameters were kept by default. 

3.1. Classification accuracy

First of all, the discriminative potential of the 
characteristic distributions was tested. We used 
the same training and testing datasets proposed 
by Liao and Noble (2003). The characteristic 
distributions for each family were obtained by 
using the training dataset and then the accuracy of 

the method was calculated on the testing dataset. 
Using every physicochemical property to classify 
protein sequences in their correct family showed 
the following top 5 indices ordered by the amount of 
matches. Table 3 shows the indices that classify most 
proteins given a total of 857 sequences in the test set.

TABLE 3. TOP 5 INDICES LIST

Index
Portion of  correct 

sequences

Alpha-helix propensity derived 
from designed sequences 

428/857

The Chou-Fasman parameter of 
the coil conformation 

408/857

Transmembrane regions of non-
mt-proteins

403/857

Apparent partial specific volume 401/857

Normalized frequency of reverse 
turn

401/857

The alpha-helix propensity derived from 
designed sequences index detects the correct family 
428 out of the 857 sequences. It was the best index 
considering the number of matches. In addition, we 
found that even though two indices have the same 
number of correct matches, it does not necessarily 
mean that they classify the same sequences (i.e., 
the 401 sequences of the apparent partial specific 
volume index are not necessarily the same of 
the 401 sequences of the normalized frequency 
of reverse turn index). Counting the number of 
sequences that have at least one index that allows 
identifying its correct family gives a total of 840 
sequences. It shows that even though the best index 
identifies 428 correct families (49,975%), the set 
of 72 physicochemical properties allows to detect 
the 98,01% of the whole sequences. There are 
17 sequences that none of the physicochemical 
properties used in this research are able to 
identify (i.e., two sequences in family 2.1.1.4, three 
sequences in family 2.28.1.1, and 12 sequences in 
family 2.44.1.2).
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 Some protein families are easy to 
represent (i.e., several indices represent most 
of their sequences), and some other families 
are difficult to represent (i.e., just a few indices 

represent them). For each protein family, 
there is an index that represents most of its 
sequences. Table 4 shows the best index for 
each of the 54 families.

TABLE 4. BEST INDICES PER FAMILY

SCOP 
family Best index SCOP 

family Best index

1.27.1.1 Membrane-buried preference parameters 2.9.1.4 Normalized relative frequency of bend R

1.27.1.2 Average relative fractional occurrence in AR(i-1) 3.1.8.1 Apparent partial specific volume

1.36.1.2 Relative preference value at C’ 3.1.8.3 Atom-based hydrophobic moment

1.36.1.5 Alpha-helix propensity derived from designed 
sequences 3.2.1.2 Relative preference value at C’

1.4.1.1 Atom-based hydrophobic moment 3.2.1.3 Normalized frequency of reverse turn, 
unweighted

1.4.1.2 Beta-sheet propensity derived from designed 
sequences 3.2.1.4 Accessibility reduction ratio

1.4.1.3 Hydropathy 3.2.1.5 Average side chain orientation angle

1.41.1.2 Relative preference value at C1 3.2.1.6 pK (-COOH)

1.41.1.5 Net charge 3.2.1.7 Normalized frequency of isolated helix

1.45.1.2 Conformational preference for all beta-strands 3.3.1.2 Normalized frequency of reverse turn, 
unweighted

2.1.1.1 Normalized frequency of N-terminal helix 3.3.1.5 Relative frequency of occurrence

2.1.1.2 Alpha-helix propensity derived from designed 
sequence 3.32.1.1 Helix-coil equilibrium constant

2.1.1.3 Mean fractional area loss 3.32.1.11 The Kerr-constant increments

2.1.1.4 Accessibility reduction ratio 3.32.1.13 Alpha-helix propensity derived from 
designed sequences

2.1.1.5 Relative frequency of occurrence 3.32.1.8 Averaged turn propensities in a 
transmembrane helix

2.28.1.1 Atom-based hydrophobic moment 3.42.1.1 Side chain interaction parameter

2.28.1.3 Transfer energy, organic solvent/water 3.42.1.5 Weights for coil at the window position of 4

2.38.4.1 Atom-based hydrophobic moment 3.42.1.8 Molecular weight

2.38.4.3 Atom-based hydrophobic moment 7.3.10.1 Delta G values for the peptides extrapolated 
to 0 M urea

2.38.4.5 Polarity 7.3.5.2 Normalized frequency of beta-turn

2.44.1.2 Normalized flexibility parameters (B-values), 
average 7.3.6.1 Transfer energy, organic solvent/water

2.5.1.1 The Kerr-constant increments 7.3.6.2 Relative preference value at N3

2.5.1.3 Value of theta(i-1) 7.3.6.4 Relative frequency of occurrence

2.52.1.2 Relative preference value at C1 7.39.1.2 Weights for coil at the window position of 3

2.56.1.2 Hydrophobic parameter 7.39.1.3 Normalized frequency of left-handed alpha-
helix

2.9.1.2 Hydrophobic parameter 7.41.5.1 pK (-COOH)

2.9.1.3 Average relative fractional occurrence in AR(i) 7.41.5.2 pK (-COOH)
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Another important result was achieved in this 
research; each family has a set of physicochemical 
properties that exhibit the highest discriminative 
potential in the CDA method. Table 5 shows the 
best set of indices for families 1.27.1.1, 2.28.1.1, and 
7.41.5.2.

TABLE 5. BEST INDICES PER FAMILY

SCOP 
family Best set of indices

1.27.1.1

Membrane-buried preference parameters 

Accessibility reduction ratio 

Normalized frequency of the 2nd and 3rd 
residues in turn 

Weights for coil at the window position of 6 

Normalized frequency of beta-sheet, 
unweighted

2.28.1.1

Atom-based hydrophobic moment 

Normalized frequency of reverse turn, 
unweighted 

Normalized relative frequency of bend R 

Side chain interaction parameter 

Normalized positional residue frequency at 
helix termini N1 

7.41.5.2

pK (-COOH) 

Normalized frequency of alpha-helix 

Conformational preference for all beta-
strands 

van der Waals parameter R0 

Accessibility reduction ratio

A total of 840 proteins out of the 857 
sequences in the test set have at least one index 
that discriminate them by SCOP families. Given a 
protein P with unknown family, the normalized 
contribution vector of P has to be compared to the 
54 characteristic distributions. In addition, because 
there are 72 characteristic distributions for each 
family, every physicochemical property gives an 
outcome (i.e., a classification decision). The 72 
outcomes for P are submitted to the Naive Bayes 
classifier. It calculates the probability of P belonging 
to each of the 54 classes, p(C|F1, F2, ..., Fn) where C is 

the number of classes (i.e., the 54 families) given F1 
to Fn (i.e., the 72 outcomes previously obtained). The 
classification obtained by the Naive Bayes technique 
is taken as the SCOP family predicted for P.

Building a Naïve Bayes classifier requires an 
additional dataset for its training. Because we have 
to keep the testing dataset unseen during training, 
we split the training dataset proposed by Liao 
and Noble (2003) into two parts. The 70% of the 
sequences in the training dataset was used to obtain 
the characteristic distributions for each family. The 
remaining 30% was used to train the Naïve Bayes 
classifier. Finally, the testing dataset was used to 
obtain the accuracy of the Naïve Bayes classifier. 
Table 6 shows the TP rate (true positive), FP rate 
(false positive), F-Measure, and ROC area (Receiver 
Operating Characteristic) for some families.

TABLE 6. ACCURACY IN THE CDA METHOD

Family TP Rate FP Rate F-Measure ROC Area

1.27.1.2 1,000 0,007 0,727 1,000

1.36.1.5 1,000 0,000 1,000 1,000

1.4.1.3 1,000 0,000 1,000 1,000

1.41.1.5 0,840 0,005 0,840 0,996

2.1.1.5 0,370 0,013 0,417 0,943

2.38.4.3 0,364 0,004 0,444 0,919

2.5.1.3 0,600 0,002 0,667 0,952

3.2.1.3 0,333 0,001 0,462 0,897

3.32.1.1 0,444 0,006 0,444 0,890

7.3.5.2 0,556 0,007 0,614 0,843

The mean values considering the 54 families 
for TP Rate, FP Rate, F-Measure, and ROC area are 
0,793, 0,005, 0,793, and 0,918, respectively. The 
ROC area is frequently used to compare different 
methods. It was observed that for some families 
(i.e., 1.36.1.5 and 1.4.1.3) most of the 72 outcomes 
coincide with the correct family. These families are 
easier to represent by a Naive Bayes classifier and a 
TP rate of 1,0 and a FP rate of 0,0 are obtained. On 
the other hand, there were families in which just a 
few of the 72 outcomes were correct. 
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3.2. Reducing dimensionality

We reduced the dimensionality of CDA method 
in another experiment. The same methodology 
was used considering only the best indices for the 
54 families. Because we found that some families 
share the same best index, we were able to reduce 
the number of indices to 35. These indices are 
shown in Table 7. 

TABLE 7. INDICES USED TO REDUCE DIMENSIONALITY

Accessibility reduction ratio Normalized frequency of 
N-terminal helix 

Alpha-helix propensity 
derived from designed 
sequences 

Normalized frequency of 
reverse turn, unweighted 

Aperiodic indices for beta-
proteins

Normalized positional 
residue frequency at helix 
termini N1 

Apparent partial specific 
volume 

Normalized relative 
frequency of bend R 

Atom-based hydrophobic 
moment pK (-COOH)

Average non-bonded 
energy per atom Polarity 

Average relative fractional 
occurrence in AR(i-1) 

Relative frequency of 
occurrence 

Averaged turn propensities 
in a transmembrane helix 

Relative population of 
conformational state C 

Conformational parameter 
of inner helix 

Relative preference value 
at C’ 

Hydropathy Relative preference value 
at C1 

Hydrophobic parameter Relative preference value 
at N3

Membrane-buried 
preference parameters Solvation free energy 

Molecular weight The Kerr-constant 
increments 

Normalized flexibility 
parameters (B-values), 
average

Value of theta(i-1) 

Normalized frequency of 
alpha-helix 

van der Waals parameter 
R0 

Normalized frequency of 
beta-turn

Weights for beta-sheet at 
the window position of 5

Normalized frequency of 
isolated helix 

Weights for coil at the 
window position of 4 

Normalized frequency of 
left-handed alpha-helix 

The mean values of the Naive Bayes classifier 
using 35 indices were 0,754, 0,006, 0,753, and 
0,901 for TP Rate, FP Rate, F-Measure, and ROC 
Area, respectively. Although the TP rate decreases, 
the computational time of the method is improved 
because only 35 indices are calculated.

The CDA method reaches a ROC score 
of 0,918 using 72 indices, and 0,901 using 35 
indices. SVM-PCD (Webb-Robertson et al., 2010), 
which is a method that also uses distributions of 
physicochemical properties reports a ROC score 
of 0,902 in SVM-PCD(531) and 0,906 in SVM-
PCD(61). SVM-PCD(531) uses 531 indices and 
18 values in each distribution, and thus, a total 
of 9558 values are calculated. SVM-PCD(61) uses 
only 61 indices and a total of 1098 values. The CDA 
method calculates 1440 values when 72 indices 
are used, and 700 values when 35 physicochemical 
properties are considered. Unlike SVM-PCD, the 
CDA method does not concatenate the values 
calculated to train an SVM. The CDA method uses 
72 values to train a Naive Bayes classifier. The 
CDA method uses fewer values than the SVM-PCD 
method to make a classification. SVM-RQA (Yang 
et al., 2008) exhibits a ROC score of 0,912. It maps 
every amino acid to a numerical value using 480 
physicochemical properties. The physicochemical 
properties are grouped into an embedding matrix, 
which is part of the recurrence quantification 
analysis. Finally, 10 values are extracted from 
each embedding matrix. A total of 4800 values are 
used to represent each protein. The CDA-method 
is comparable to SVM-RQA in accuracy and it uses 
fewer values to represent each protein. Both, the 
SVM-PCD and SVM-RQA methods, were tested on 
the same dataset that we used in the experiments. 

4.    CONCLUSIONS

In this paper, a new method for protein remote 
homology detection was proposed. It is called 
the CDA (Characteristic Distribution Analysis) 
method and is based on representing every protein 
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sequence by a distribution of 20 values obtained 
from the physicochemical values of the amino acids. 
We proved the hypothesis that every SCOP family 
has a distribution that is typical for their sequences. 
The CDA method uses characteristic distributions to 
separate the sequences in each family from the rest 
of the proteins in a dataset. We found that there are 
physicochemical properties that discriminate better 
the sequences of a protein family. The alpha-helix 
propensity derived from designed sequences index, 
the atom-based hydrophobic moment, and the 
hydrophobic parameter achieved the best results for 
many families. In addition, a specific set of indices 
were found to be more suitable for each family. 
The CDA method achieves a TP rate of 0,793, a FP 
rate of 0,005, and a ROC score of 0,918. Reducing 
dimensionality also showed important results, a set 
of 35 indices achieved a TP rate 0,754, a FP of 0,006, 
and a ROC score of 0,901.

The CDA method requires fewer values to 
represent a protein than the SVM-PCD and SVM-RQA 
methods and presents comparable accuracy values. 
The CDA method might be improved by adding 
evolutionary information from frequency profiles. 
According to Liu et al. (2012), using a profile-based 
strategy increases the accuracy in remote homology 
detection methods.
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