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ABSTRACT
This article deals with the design of optimum microchannel heat sinks through Unified Particle Swarm Optimisa-

tion (UPSO) and Harmony Search (HS). These heat sinks are used for the thermal management of electronic devices, and 
we analyse the performance of UPSO and HS in their design, both, systematically and thoroughly. The objective function 
was created using the entropy generation minimisation criterion. In this study, we fixed the geometry of the micro-
channel, the amount of heat to be removed, and the properties of the cooling fluid. Moreover, we calculated the entropy 
generation rate, the volume flow rate of air, the channel width, the channel height, and the Knudsen number. The results 
of several simulation optimizations indicate that both global optimisation strategies yielded similar results, about 0.032 
W/K, and that HS required five times more iterations than UPSO, but only about a nineteenth of its computation time. In 
addition, HS revealed a greater chance (about three times) of finding a better solution than UPSO, but with a higher dis-
persion rate (about five times). Nonetheless, both algorithms successfully optimised the design for different scenarios, 
even when varying the material of the heat sink, and for different heat transfer rates.

KEYWORDS: Entropy generation minimisation, Global optimization algorithm, Microchannel heat sink, Optimal design

DISEÑO ÓPTIMO DE MICROCANALES. UNA COMPARACIÓN DE 
DOS ALGORITMOS DE OPTIMIZACIÓN GLOBAL

RESUMEN
Este artículo trata sobre el diseño óptimo de disipadores de calor de tipo microcanal utilizando los métodos Unified 

Particle Swarm Optimisation (UPSO) y Harmony Search (HS). Estos disipadores se utilizan en el enfriamiento de compo-
nentes microelectrónicos. Por ello analizamos el desempeño de UPSO y HS en su diseño, de forma sistemática y completa. 
La función objetivo se obtuvo con el criterio de la mínima generación de entropía. En este estudio, se definió la geometría 
del microcanal, la cantidad de calor a ser retirado y las propiedades del fluido de trabajo. Además, se calculó la tasa de 
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generación de entropía, el flujo volumétrico de aire, el ancho y la altura del canal y el número de Knudsen. Los resultados 
de las simulaciones indicaron que ambas estrategias de optimización dieron resultados similares, alrededor de 0,032 
W / K, y que HS requiere cinco veces más iteraciones que UPSO, pero sólo alrededor de 1/19 de su tiempo de cálculo. 
Además, HS reveló una mayor probabilidad de encontrar una mejor solución que UPSO, pero con una mayor dispersión. 
Sin embargo, ambos algoritmos resolvieron exitosamente el diseño para diferentes escenarios, incluso cuando se varía 
el material del disipador y la tasa de transferencia de calor.

PALABRAS CLAVE: Algoritmos de optimización Global, diseño óptimo, disipadores de calor de tipo microcanal, 
mínima generación de entropía.

DESIGN ÓTIMO DE MICROCANAIS. UMA COMPARAÇÃO DOS 
DOIS ALGORITMOS DE OPTIMIZAÇÃO GLOBAL

RESUMO
Este artigo discute o projeto ideal de dissipadores de calor de microcanais utilizando os métodos Unified Particle 

Swarm Optimization (UPSO) e Harmonia Search (HS). Estes resfriadores são utilizados em refrigeração com componen-
tes microeletrônicos. Por isso, vamos analisar o desempenho de UPSO e HS na sua concepção, de uma forma sistemática 
e completa. A função objetivo foi obtida com o critério de geração mínima de entropia. Neste estudo, definiu-se a geome-
tria de microcanais, a quantidade de calor a ser removida e as propriedades do fluido de trabalho. Além disso, se calculo 
a taxa de geração de entropia, o caudal volumétrico de ar, a largura e a altura do canal e o número de Knudsen. Os resulta-
dos da simulação indicaram que ambas das estratégias de otimização deram resultados semelhantes, cerca de 0.032 W / 
K, e que HS exige cinco vezes mais iterações UPSO, mas apenas cerca de 1/19 do seu tempo de computação. Também, HS 
revelou uma maior probabilidade de encontrar uma solução melhor do que UPSO, mas com maior dispersão. No entanto, 
ambos dos algoritmos resolveram com sucesso o design para diferentes cenários, mesmo quando o material do pia e a 
taxa de transferência de calor é variada.

PALAVRAS-CHAVE: algoritmos de otimização globais, design ideal, dissipadores de calor de tipo microcanal, ge-
ração mínima de entropia.

Nomenclature

C Adimensional parameter

Cp Specific heat at constant pressure (J/kg · K)

Cv Specific heat at constant volume (J/kg · K)

Dh Hydraulic diameter ≡ 4Hcwc/(Hc + 2wc) (m)

FW Fretwidth 

F Friction factor 

G Volume flow rate (m3/s)

 Global velocity component

Hc  Channel height (m)

HMCR Harmony Memory Consideration Rate

HMS Harmony Memory Size 

havg Average heat transfer coefficient (W/m2 · K)

Kn Knudsen number 

k Thermal conductivity of solid (W/m · K)

kce Sum of entrance and exit losses 

kf Thermal conductivity of fluid (W/m · K)

L Length of cannel in flow direction (m)

 Local velocity component 

N Total number of microchannels 

NuDh
 Nusselt number base on hydraulic diameter                 

≡ Dhhavg/kf

n Total number of design variables

P Pressure (Pa) 

PAR Pitch Adjusting Rate 

PeDh
 Peclet number base on hydraulic diameter                       

≡ DhUav/αth
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Pr Prandtl number 

Ƥg Best position for whole swarm 

Ƥgp Best position for each neighbourhood 

Ƥp Best position for each particle 

Q�  Total heat transfer rate (W)

Rth Total thermal resistance (K/W)

ReDh
 Reynolds number base on hydraulic diameter 

rand Random number, uniformly distributed between 
zero and one

�gen Total entropy generation rate 

�gen,ht Entropy generation rate due to heat transfer (W/K)

�gen,ff Entropy generation rate due to fluid friction (W/K)

Ta Ambient temperature (K)

Tb Heat sink base temperature (K)

Uavg Average velocity in channels (m/s)

V Total velocity

W Width of heat sink (m)

wc Half of the channel width (m)

ww Half of the fin thickness (m)

Xi Design variables

Greek symbols

α Slip parameter

αc Channel aspect ratio ≡2wc /Hc

αhs Heat sink aspect ratio ≡L/2wc

αth Thermal diffusivity ≡kf /ϱ·cp  

 (m2/s)

γ Ratio of specific heats ≡cp/cv  

ΔP Pressure drop across microchannel (Pa)

ηfin Fin efficiency

ν Kinematic viscosity of fluid (kg/m · s)

ρ Fluid density (kg/m3)

σ Tangential momentum accommodation coefficient

σt Energy accommodation coefficient

φ1 Cognitive parameter

φ2 Social parameter

χ Constriction factor

Ψ Swarm size

1.     INTRODUCTION

Modern electronics pack lots of semiconductors 
in a reduced area and execute specific tasks at high 
clock rates, magnifying the dissipated power and forc-
ing designers to encompass heat transfer phenomena. 
What began with the era of Large Scale Integration 
(LSI) has led to different design strategies, and has 
produced different commercial options to deal with it.

Some years ago, Tuckerman and Pease urged 
the incorporation of heat sinks in electronics, since 
an inadequate thermal management leads to ineffi-
ciency and even failure of the devices. They consid-
ered an electric equivalent for designing microchan-
nels and rocketed their use (nowadays, they are 
broadly used in microelectronics). Later, some re-
searchers proposed an alternative design for micro-
channels, considering entropy generation as a met-
ric of the irreversibility in a system (in a way that 
its minimisation represents the maximisation of the 
operating efficiency), but using traditional optimi-
sation approaches. Recently, the use of the entropy 
generation minimisation (EGM) criterion has grown 
in different thermal management scenarios. We be-
lieve this is partly due to the evolution of modern 
optimisation and partly due to its straightforward 
application, Rao and Waghmare (2014), Hamad-
neh et al. (2013), Adham, Mohd-Ghazali and Ahmad 
(2012), Mohammed Adham, Mohd-Ghazali and Ah-
mad (2013), Karathanassis et al. (2013), Chen and 
Chen (2013). However, these two (EGM and mod-
ern optimisation) have not been broadly applied to 
the design of microchannels until relatively recent 
years. For example, Adham, Mohd-Ghazali and Ah-
mad (2014) used Genetic Algorithm (GA), and a 
modification of Khan’s et al. model; and Khan, Kadri 
and Ali (2013) compared results achieved using GA 
against previously reported ones, obtained through 
NR. Additionally,  Cruz, Amaya and Correa (2015) 
designed microchannel heat sinks with a more com-
prehensive mathematical model, using algorithms 
such as Simulated Annealing (SA), Unified Particle 
Swarm Optimisation (UPSO) and Spiral Optimisa-
tion. This article focuses on the aforementioned gap, 
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designing a microchannel heat sink (MCHS) through 
entropy generation minimisation (EGM), and opti-
mising it with two different modern techniques. 
From the vast supply of available methods, and for 
the need of a valid strategy to accomplish our de-
signs in a short period of time and in a reliable way, 
we chose the Harmony Search (HS) and the Unified 
Particle Swarm Optimisation (UPSO) algorithms, 
due to their interesting characteristics, and to the 
good results they have achieved for different ap-
plications, Abdel-Raouf and Abdel-Baset Metwally 
(2013), Satpati, Koley and Datta (2014), Amaya, 
Cruz and Correa (2015). Furthermore we have al-
ready had good experience with those algorithms 
in other engineering applications. We begin by ex-
plaining some of the fundamentals around MCHS 
and about modern optimisation techniques, and 
then move on to the methodology section, where we 
discuss the procedure followed in this study. Moving 
on to the results, we first show the data of a Monte 
Carlo analysis and some preliminary tests with the 
algorithms, in order to obtain a first glance of the 
parameters and to define a set of values that allow 
both algorithms to achieve good results. Afterwards, 
we compare the performance of HS and UPSO under 
specific scenarios, and for multiple materials and 
heat generation configurations. We finish this man-
uscript through the conclusions and recommenda-
tions for future research.

2.     FUNDAMENTALS

Nowadays, integrated circuits (IC) are fabri-
cated using vast amounts of semiconductors so that 
they can operate at high frequencies. However, the 
power dissipated by a chip increases with the oper-
ating frequency, and since their performance is tem-
perature sensitive, it is vital to remove it. Heat sinks 
provide a thermal support to electronic devices, al-
lowing the heat to flow from the device and to the 
environment, and thus extending their lifetime. 

2.1. Model of the microchannel heat sink

Heat sinks may have diverse geometries, but 
they all perform the same task and are based on 
the same main principle: extended superficial area 
available for heat transfer. Among them, microchan-
nel heat sinks (MCHS) are commonly used when 
space, temperature and heat flux are constrained 
by the specification of the problem (e.g. biomedical 
systems, laptops and gadgets). The main features of 
these devices relate to their base structure (which 
confines a fluid  flow to channels and thus allows 
a high heat transfer flux), as well as, to their small 
temperature increase, high heat transfer coeffi-
cients and negligible effects related to mass transfer. 
MCHS have been broadly used in literature, Rim-
bault, Nguyen and Galanis (2014), Karunanithi and 
Hassanipour (2014), Hatami and Ganji (2014), Leng 
et al. (2015), Hajialigol et al. (2015), Khan, Kadri 
and Ali (2013), Adham, Mohd-Ghazali and Ahmad 
(2014). A general scheme of their base structure 
is shown in Figure 1 where the geometric param-
eters L and W relate to the length and width of the 
device, respectively; Hc and wc represent the height 
and half-width of each channel; and ww is half the 
separation between two channels.

Figure 1. Basic structure of a microchannel heat sink

In order to obtain the mathematical model, 
Khan et al. (2013) considered the top surface as 
adiabatic, while the lower plate allowed for a uni-
form heat flow from the chip. They assumed that the 
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walls of the channels are smooth and with adiabatic 
extremes, and that the material of the heat sink is 
isotropic. Both, the cooling fluid and the thermal en-
ergy flow, are considered as stationary, laminar, two-
dimensional and fully developed. The effects due to 
fluid drag can be overlooked when 0.001≤Kn≤0.1. 
Moreover, the flow is uncompressible with constant 
thermophysical properties and the axial conduction 
of the fin and the fluid is neglected, as well as the 
variations of kinetic and potential energies. This 
model also assumes an equal area available for heat 
transfer, between the microchannel and the elec-
tronic device. This last aspect seems a rather par-
ticular limitation of this model, due that it is not a 
common situation in real life.  Khan et al. developed 
the model shown in (1), which describes the entro-
py generation rate of a MCHS. This equation corre-
lates the entropy generated due to the irreversibil-
ity of heat transfer (in the heat sink and in the fluid) 
and to the fluid friction, defined as �gen,ht and �gen,ff , 
respectively. This correlation was obtained through 
the methodology laid out by  Bejan (1995) who dic-
tates that the minimum entropy generation of a real 
system can be found through an analysis based on 
heat transfer, fluid mechanics and thermodynamics, 

Q� 2 G
�gen = �gen,ht+ �gen,ff= Rth + ΔP=

TaTb Ta

Q� 2 2αhsC3

+
NρwcHcU

3
avgC4

TaTb LkfC1C2 Ta

(1)

The first part of the entropy generation, �gen,ht , 
depends on the heat transfer rate (Q� ), as well as on 
the absolute temperature of the base plate (Tb) and 
of the ambient (Ta), and the total thermal resistance 
of the device. The latter relates to a correlation of 
parameters: (2αhsC3)/(LkfC1C2), where αhs and L are 
the aspect ratio and the length (in the direction of 
the heat flow). kf is the thermal conductivity of the 
fluid and C1, C2 and C3 are correlations of the number 
of channels (N = (W/2 – 2ww)/(wc + ww)), the aspect 
ratio of the heat sink and the channel (αhs=L/2wc and 
αc= 2wc/Hc , respectively), the fin’s efficiency (ηfin), 

and dimensionless groups such as Nusselt’s (NuDh
) 

and Peclet’s (PeDh
) numbers, shown in (2),

1+αc 1 C1 C1 = Nαhs(2ηfin+αc),  C2 =  ,C3 = +
αc NuDh

N·PeDh

(2)

The second part of the entropy generation, 
�gen,ff, depends on N and Ta, as well as on the fluid 
density (ρ), the channel geometry (wc and Hc), the 
average velocity of the flow (Uavg) and the parameter 
C4, that correlates the losses on the channels with 
the effects due to friction, as shown in (3). 

�
L
�C4 = kce+ f

Dh
(3)

Once a single-objective function based on (1) 
has been defined, the heat sink is designed by find-
ing the variables (i.e. the design vector) Hc , wc , ww, 
Kn and G that minimise the entropy generation rate. 
Thus, the restricted optimisation problem given in 
(4) appears. For this research, we also considered, 
for comparison purposes, the restrictions previous-
ly reported in literature Adham, Mohd-Ghazali and 
Ahmad (2012).

Q� 2 2αhsC3 NρwcHcU
3
avgC4min �gen = min +

TaTb LkfC1C2 Ta

s.t 2wc ≤Hc  and ww ≤ wc                                                                                                                              
1 μm ≤ Hc ≤ 50 mm                                                                  
1 μm ≤ wc ,ww ≤ 1 mm                                                              
0.001 ≤ Kn ≤ 0.1                                                                                 
1 × 10–6 m3/s ≤ G ≤ 0.01 m3/s

(4)

2.2. Modern global optimization methods

These techniques generally require simple 
calculations, making them versatile and easy to im-
plement, as opposed to traditional gradient-based 
approaches. 

Harmony Search algorithm (HS)

About fifteen years ago, as presented Ama-
ya, et al. (2015), Geen proposed the HS algorithm 
inspired by the improvisation expert musicians 
carry out. This process is modelled through three                         
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possible choices regarding a piece of music: repro-
duce an already famous one, a variant or a brand 
new one. Since a piece of music is a sequence of 
tones playing in harmony, HS relates them to the 
design vector of an optimisation problem. In its 
most basic form, HS depends on four parameters. 
The first one is the Harmony Memory Size (MHS), 
or simply put, the maximum number of pieces that 
can be stored in memory. The second parameter is 
the Harmony Memory Considering Rate (HMCR), 
that determines if an already stored piece should 
be selected, or not. The third parameter is the Pitch 
Adjusting Rate (PAR) and defines how often a select-
ed piece must be adjusted using (5) and the fourth 
parameter, known as Fretwidth (FW). The modified 
solution, , is the same piece that was selected, but 
shifted around FW, using a uniformly distributed 
random number between zero and one (rand). It is 
worth mentioning that this is the only equation HS 
requires, as opposed to other approaches,

Xt'= Xt' + (2 · rand – 1) · FW. (5)

A general algorithm can thus be laid out as:

1. Define HMCR, PAR, FW, the search domain 
Xmin≤X≤Xmax , and the objective function fobj(X1, 
X2,..., Xn). Also, define the stop criteria. 

2. Randomly populate the memory matrix (HM), 
of size HMS × n.

3. Generate a random number with HMCR prob-
ability of being successful. If it is, go to step 
four. Otherwise, select a random value and go 
to step six.

4. Select the element located at a random row of 
HM and at the column corresponding to the di-
mension being updated.

5. Generate a random number with PAR probabil-
ity of being successful. If it is, update the value 
using (5).

6. Move on to the next dimension and repeat for 
all n dimensions.

7. Check stop criteria. If it complies, stop and 
print results. Otherwise, return to step three.

Unified Particle Swarm Optimisation algo-
rithm (UPSO)

UPSO was proposed by Parsopoulos and Vraha-
tis, and it is an improvement of the traditional PSO 
algorithm, originally proposed by Kennedy and Eber-
hart. This technique is based on swarm intelligence 
and it was inspired by the natural process of food 
search carried out by bird flocks and fish shoals. The 
main difference between UPSO and PSO is that in the 
former, the agents (also known as particles) can form 
subsets (or neighbourhoods), in order to strengthen 
the exploration (global behaviour) and exploitation 
(local behaviour) of the search domain. The total ve-
locity of a particle is composed of a global and a local 
dynamic, respectively known as , (6), and , (7),

p
t+1=χ·[Vp

t + φ1rand1(Ƥp– χp
t )+φ2 rand2(Ƥg– χp

t )] (6)

p
t+1=χ·[Vp

t + φ1rand3(Ƥp– χp
t )+φ2 rand4(Ƥgp– χp

t )] (7)

These two elements directly depend on parameters 
such as the constriction factor, χ, that limits the ve-
locity of the particles to avoid an explosion of the 
swarm; the self and swarm confidence, φ1 and φ2 re-
spectively; and four uniformly distributed random 
numbers between zero and one, rand1. UPSO also 
considers the position,  , and the total velocity,  , 
at the time step t, as well as the best position found 
by each particle, Ƥp, by each neighbourhood, Ƥgp, and 
by the swarm, Ƥg , during the whole search. Note that 
the index p relates to a particle in the swarm, where 
p = 1,...,Ψ, and Ψ is the total number of agents. The 
total velocity of each particle for the next time step, 

, is obtained through (8) where u is the unifica-
tion factor and represents a constant between zero 
and one, whose objective is to balance the global 
and local behaviour of each particle. Finally, (9) is 
used to find the new position of the swarm,

Vp
t+1= (1–u) p

t+1 +u· p
t+1 (8)

χp
t+1= χp

t+1 + Vp
t+1 (9)
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A general algorithm can thus be laid out as:

1. Define χ, φ1, φ1, Ψ and the selection criteria 
of the neighbourhoods, the search domain 
Xmin≤Xp≤Xmax , and the objective function fobj(χ).

2. Randomly assign the initial position of each 
particle,  , over the search domain and assign 
an initial value for the velocity .

3. Evaluate each position, χp , in fobj and find Ƥp ,  
Ƥgp and Ƥg.

4. Use (8) and (9) to calculate  and , re-
spectively.

5. Evaluate each new position in the objective 
function and update Ƥp  , Ƥgp and Ƥg.

6. Check stop criteria. If it complies, stop and 
print results. Otherwise, make t = t +1 and go 
to step four.

2.3. Solution of a constrained optimisa-
tion problem

A constrained optimisation problem is defined 
as shown in (10), and the design vector χ* with n 
components is known as the solution, or optimum 
design variable, which represents the design vector  
χ that minimises the single-objective function fobj(χ) 
inside the feasible region defined by the restrictions 

i  and the boundaries of each dimension. Any num-
ber of restrictions, ng , can be implemented and they 
might represent either equalities or inequalities,

min fobj (X), X={X1, X2,…,Xn}  X  n

s.t.   i (X)≤0   i=1,2,…,ng          

 Xj,lower≤Xj≤Xj,upper   j=1,2,…,n)

(10)

There are, at least, two general approaches for 
solving these kind of problems through global optimi-
sation algorithms. The first one repositions the agents 
into the feasible region whenever an update takes 
them out, and the kind of reposition varies according 
to the optimisation algorithm. The second one modi-
fies the objective function through penalty factors, 
which in turn vary according to each specific problem. 

3.     METHODOLOGY

During this study, simulation data was gath-
ered using an ASUS® S46C personal computer with 
the following specifications: Intel® Core™ i7-3537U 
CPU @ 2.00 GHz – 2.50 GHz, 6 GB RAM, operating 
under Microsoft® Windows™ 8.1 Single - 64 bits. 
This work was split into different stages, and in all 
tests we stopped the algorithms if they did not im-
prove after a given number of iterations (saturation) 
or if excessive iterations were carried out. 

3.1. Monte Carlo simulation

The first stage was a set of Monte Carlo simula-
tions to observe the relative importance of the de-
sign parameters, from a known distribution of en-
tropy generation rate, and the influence of heat and 
mass transfer phenomena on it. We first analysed 
the final equation and then began deepening into 
the definition of each variable, via their respective 
equations. For each one of these tests, 1010  samples 
were generated so the data was significant.

3.2. Selection of parameters

The second stage was a parameter search to 
tune each algorithm, so their performances could 
be properly addressed. On this regard, we used the 
design parameters shown in Table 1, considering 
air as cooling fluid and a total heat transfer of 150 
W from the chip. We also used the set of param-
eters shown in Table 2, and ran 40 repetitions of 
each parameter configuration, for each algorithm, 
considering the objective function given in (1), and 
the design vector as X= (Hc , wc , ww , Kn, G) all this 
in order to solve the minimisation problem given 
in (4). We measured the convergence rate of each 
configuration, which is simply the ratio of the tests 
that satisfied the main stop criterion, over the total 
number of tests. It is worth mentioning that we used 
three different components for the fretwidth (FW1, 
FW2 and FW3), where each one relates to a specific 
design variable. This was done because there is a 
difference in the order of magnitude of the design 
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variables and because a bad scaling of FW could 
jeopardize HS’s performance. After finding the best 
parameters for each algorithm, 1000 repetitions 
were run for each one and we analysed their ben-
efits and drawbacks.

TABLE 1. ASSUMED VALUES TO CALCULATE ENTROPY 
GENERATION RATE FOR A MICROCHANNEL HEAT SINK.

Parameter Value Parameter Values

L(mm) 51 v (m2/s) 1.58 × 10−5

W(mm) 51 Pr 0.71

k(W/m · K) 398  (W) 150

kf(W/m · K) 0.0261 Ta (K) 300

ρ(kg/m3) 1.1614 σ 0.85

cp(J/kg · K) 1007 σt 0.85

TABLE 2. SET OF PARAMETERS FOR HS AND UPSO 
DURING THE TUNING STAGE.

Parameters Values

Ψ and HMS 10, 25, 50, 75, 100, 125, 175 and 200

φ1 and φ2 2.0, 2.2, 2.4, 2.6, 2.8 and 3.0

χ 0.1, 0.4 and 0.7

u, HMCR and PAR 0.2, 0.4, 0.6, 0.8, 0.9, 0.95 and 0.99

FW1 10–6, 10–7,10–7,10–4,10–7 

FW2 10–5, 10–6,10–6,10–3,10–6 

FW3  5× 10–5, 10–5,10–6,10–2,10–5 

We also performed the Wilcoxon signed-rank 
test for the difference of �gen,min obtained through HS 
and UPSO, using equality of mean values as the null 
hypothesis ( 0 : μHS =μUPSO) and a significance level 
of 0.05 for two tails  Derrac et al. (2011).

3.3. Design scenarios
The third stage considered two variations of 

the model and its constraints. We analyse the solu-
tions and the way in which the algorithms behaved. 
The first one dealt with bigger search domains, 
but preserving the context of the design, as shown 
in (11). Here, it is important to note that the limits 
of Kn were not varied since the effects due to fluid 
drag were disregarded. The second one dealt with 

different materials (Table 3), based on the informa-
tion provided in Mohammed Adham, Mohd-Ghazali 
and Ahmad (2013) for microchannel structures, and 
with different heat generation rates (Q� ),

2wc ≤ Hc  and wc ≥ ww

10–10 ≤ Hc ≤50×10–3 m
10–10 ≤ wc ≤ 10–3 m
10–10 ≤ ww ≤ 10 ×10–3 m
0.001 ≤ Kn ≤ 0.1
10–10 ≤ G ≤ 10–2 m3/s

(11)

TABLE 3. MATERIALS CONSIDERED TO DESIGN A 
MCHS AND THEIR THERMAL CONDUCTIVITIES.

Material  k(W/m · K) Material  k(W/m · K)
Molybdenum 
(Mo)

142
Silicon 
carbide (SiC)

270

Tungsten (W) 155 Gold (Au) 315
Aluminum 
(Al)

247
Aluminum 
nitride (AlN)

320

Beryllium 
oxide (BeO)

260 Copper (Cu) 398

3.4. Data Comparison
In the final stage of this work, Kn as well as 

G, were fixed in an interval, as shown by the con-
straints given in (12). A material with k = 148 
W/m·K was also considered. The resulting designs 
were compared with some of the data provided by 
Khan, Kadri and Ali (2013), 

2wc ≤ Hc  and wc ≥ ww

3 ≤ Hc ≤ 8 mm
0.1 ≤ 2wc , 2ww ≤ 0.3 mm
0.001 ≤ Kn ≤ 0.1
0.005 ≤ G ≤ 0.009 m3/s

(12)

4.     RESULTS AND DISCUSSION
4.1. Monte Carlo analysis

Table 4 shows the values found with Monte 
Carlo, which provides us with an insight about the 
order of magnitude of each parameter and their rela-
tive importance. In this case, we obtained a feasible 
MCHS design (choosing each parameter from the in-
tervals given in Table 4), but not the optimum one.
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TABLE 4. RANGES OF THE DESIGN VARIABLES FOUND 
USING A MONTE CARLO APPROACH.  

Parameter Min. value Max. value Unit

�gen 0.4340 0.4459 W/K

�gen,ff 0.0367 0.0373 W/K

�gen,ht 0.3973 0.4086 W/K

Rth 0.3387 0.3527 K/W

ΔP 1573.6436 1599.3707 Pa

Uav 2.7793 3.5731 m/s

Hc 173.39×10–4 1.0327×10–1 m

wc 8.2103×10–5 8.4662×10–5 m

ww 8.9911×10–8 8.2103×10–5 m

4.2. Parameter selection
When using HS, it was found that a reduced 

memory size (HMS) and a high considering rate 
(HMCR) yielded a high convergence rate (Figure 
2A). Regarding the pitch rate (PAR), we found that 
smaller values tended to favour convergence for al-
most all HMS values (Figure 2B) as well as for ev-
ery HMCR, even though in the latter the effect was 
more important for lower values (Figure 3A). The 
remaining parameter, i.e. the fretwidth (FW), pro-
vided an improvement in the average convergence 
rate when using the first configuration, even though 
its effect was not as strong as for the other ones 
(Figure 3B). Therefore, we selected 10, 0.9, 0.2 and 
FW3 as the values for HMS, HMCR, PAR and FW.

Figure 2. Average convergence rates found when varying (A) HMS and HMCR, and (B) HMS and PAR

(A) (B)

Figure 3. Average convergence rates found when varying (A) HMCR and PAR, and (B) HMS and FW

(A) (B)
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Figure 4. Average convergence rates found when varying (A) Ψ (or swarm size) and u, and (B) Ψ (or swarm size) and χ (or chi)

(A) (B)

Figure 5. Average convergence rates found when 
varying φ1 (or phi1) and φ2 (or phi2).

With respect to UPSO, we found that bigger 
swarms and a unification factor (u) between 0.4 and 
0.6 yielded better convergence rates (Figure 4A). In 
order to clarify this idea some more, we calculated a 
global convergence rate, considering the average of all 
tests (including all combinations of parameters) as a 
function of the unification factor. We found that u=0.4 
and u=0.6 yield 82.2% and 82.3%, respectively, while 
u=0.2 yields 81.2% and u=0.8 yields 81.5%. We also 
found that no matter the size of the swarm, smaller 
constriction values (χ) provide better convergence 
rates (Figure 4B). Since φ1 and φ2 are both part of 
the same equation, we looked for a good combination 

and not for a tendency, finding that φ1=3.0 and φ1=2.2 
yielded the highest convergence rates (Figure 5).

Table 5 summarizes the parameters that work 
best for both algorithms, based on what was previous-
ly discussed and the best results achieved with each 
algorithm are laid out in Table 6. Figure 6 shows the 
normalised frequency distribution for the minimum 
entropy generation rates found with HS and UPSO, 
using the same bins for both techniques (calculated 
using UPSO’s span). In the first case, we considered 
only 959 executions in the plot, striving to simplify the 
plot. We noted that the probability of obtaining a �gen,min 

between 32.26 and 33.68 mW/K using HS and UPSO 
is of 23.5% and of 9.6%, respectively. Also, we found 
that the mean value of �gen,min is virtually the same for 
both methods, but HS showed a standard deviation of 
5 mW/K, more than twice that of UPSO’s; and HS re-
quires almost five times more iterations than UPSO, 
but it does them in a time about 20 times smaller. 

TABLE 5. BEST PARAMETERS FOUND FOR HS AND 
UPSO.

HS UPSO
Parameters Values Parameters Values
HMS 10 Ψ 200
HMCR 0.9 u 0.5
PAR 0.2 φ1 3.0
FW FW3 φ2 2.2

χ 0.1
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TABLE 6. SUMMARY OF BEST DESIGN PARAMETERS 
FOUND  WITH HS AND UPSO AFTER 1000 REPETI-
TIONS, USING THE ORIGINAL CONSTRAINTS

Design parameters HS UPSO

�gen,min (W/K) 0.032011 0.032257

Hc (mm) 49.8 48.7

wc (μm) 168 180

ww (μm) 69.2 67.6

Kn 1.64 × 10–2 5.49 × 10–3

G (m3/s) 9.98 × 10–3 9.87 × 10–3

Figure 6. Normalised frequency distribution for the 
minimum entropy generation rates found with HS and 
UPSO after 1000 repetitions.

Figure 7. Normalised frequency distribution for the 
difference of minimum entropy generation rates 
found by HS and by UPSO after 1000 repetitions.

In addition, the Wilcoxon signed-rank test, a 
non-parametric statistical hypothesis test, was used 

to compare the difference of �gen,min obtained using 
both methods (i.e., HS and UPSO). It was concluded 
that there is insufficient evidence to reject the null 
hypothesis ( 0 : μHS = μUPSO), with a significance level 
of 0.05. The power of the test was 0.1912. Figure 7 
shows the distribution of this difference with mean, 
standard deviation, skewness and kurtosis equal to 
0.89 mW/K, 5.34 mW/K, 3.52 and 28.67,respectively.

4.3. Design scenarios

4.3.1. Search domain expansion

After expanding the search domain, both ap-
proaches achieved minimum entropy values quite 
similar to those of the smaller domain (Table 7), 
although the values of the design parameters are 
somewhat different. Even so, we found that the av-
erage minimum entropy generation rate increased 
for both algorithms and that the big data dispersion 
of HS is still present (Table 8). 

TABLE 7. SUMMARY OF BEST DESIGN PARAMETERS 
FOUND WITH HS AND UPSO AFTER 1000 REPETI-
TIONS, USING THE MODIFIED CONSTRAINTS.

Design parameters HS UPSO

�gen,min (W/K) 0.032093 0.032473

Hc (mm) 49.8 46.8

wc (μm) 158 145

ww (μm) 69.7 54.5

Kn 2.16 × 10–2 3.08 × 10–2

G (m3/s) 9.87 × 10–3 9.80 × 10–2

TABLE 8. SUMMARY ABOUT 1000 REPETITIONS OF 
HS AND UPSO USING THE PARAMETERS GIVEN IN 
TABLE 5 AND THE MODIFIED CONSTRAINTS (11).

HS UPSO

�gen,min 
(W/K)

Iterations
Time

(s)

�gen,min 
(W/K)

Iterations
Time

(s)

Mean 0.0369 111 1.6980 0.0359 21 0.7141

Std 
dev

0.0046 52 0.8784 0.0018 9 0.3097

Min 0.0321 11 0.0408 0.0325 10 0.2091

Max 0.0881 455 6.9756 0.0434 111 2.7942
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4.3.2. Tests for different materials

We found that the convergence rate of both ap-
proaches is not affected by the material which the heat 
sinks are made of, since higher conductivity values 
returned lower entropy generation rates, as expected 
(Table 9). Nevertheless, there is a clear dependence 
of the values of the design parameters with that vari-
able. In Figure 8, UPSO yielded a slightly lower aver-
age minimum entropy generation rate for all materi-
als but copper. Nonetheless, HS was able to achieve 
a better answer in all cases, so we consider that the 
difference in the data is mainly due to HS’s high dis-
persion. Moreover, we observed that the number of 
required iterations remains quite steady for all mate-
rials, and even though HS did almost six times more 
iterations than UPSO, it was about 20 times faster. 

TABLE 9. OPTIMAL MCHS’S DESIGN FOUND WITH HS 
FOR DIFFERENT MATERIALS.

Hc          

(m)   
10–3

wc           

(m) 
10–6

ww       

(m) 
10–6

Kn G          
(m3/s)     
10–310–3

Mo 49.7 148.1 80.8 22.3 9.9
W 49.0 132.8 66.6 33.4 9.9
Al 49.6 142.9 63.1 25.2 10.0

BeO 49.0 160.5 62.7 15.0 10.0
SiC 49.9 162.5 61.4 16.1 10.0
Au 49.9 165.1 69.0 18.1 9.9
AlN 49.2 157.0 74.6 21.5 9.9
Cu 49.5 172.4 79.1 15.9 9.9

4.3.3. Tests for different dissipated power

We fixed the material to copper (since it al-
lowed for the minimum entropy) and varied the 
heat generation, ranging from 150 W and up to 1000 
W, with 50 W steps. In order to facilitate data com-
parison, we use the same organization style as in  
Khan, Kadri and Ali (2013), Adham, Mohd-Ghazali 
and Ahmad (2014). Thus, Table 10 shows the op-
timal designs achieved with HS and UPSO in terms 
of three design variables (i.e., Kn, αc and β) and 
three performance parameters (i.e., Rth, ΔP and �gen).

For all designs, we found that the channel 
height and the volume flow rate remains close to the 

upper limits (50 mm and 0.01 m3/s, respectively), as 
expected. In the same way, higher heat flow rates lead 
to higher entropy generation rates. The thermal re-
sistance diminishes as the generated heat rises, since 
a fixed flow requires that the minimum resistance 
decreases in order to satisfy the increased power dis-
sipation from the chip. The pressure drop estimated 
by HS was consistently higher than the reported by 
UPSO although there is some kind of oscillation in 
their values. Additionally, we observed that the opti-
mal channel aspect ratio (αc) decreases when the heat 
transfer rate increases, with an approximate rate of 4 
× 10–6 1/W, making channels highly rectangular.

Figure 8. Average +/- standard deviation and best values 
for minimum entropy generation rate after 1000 repeti-
tions of HS and UPSO, for the materials given in Table 3.

It was also observed that the pressure drop in-
creases at a rate of 1.15 Pa/W and that a high frac-
tion of �gen,min is due to heat transfer (Figure 9), while 
the contribution of mass transfer (�gen,ff) is reduced. 
As it was anticipated, these results show a system 
highly dependent of the heat transfer mechanism. 
Moreover, we appreciated a rise in the heat sink 
base temperature (Tb) with the increased heat flow 
(Figure 10). For a traditional electronic device,Tb  > 
345 K may compromise its performance, so special 
care must be taken into account. On this regard, we 
show that for heat transfer rates over 500 W (piece-
wise box), the device will misbehave, so additional 
variables, such as the properties of the fluid, must 
be included in the model.
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Figure 9. Increase of the minimum total entropy gen-
eration rate and its components by heat transfer (ht) 
and fluid friction (ff), as a function of the total heat 
transfer rate, using HS.

TABLE 10. OPTIMAL DESIGNS FOUND WITH HS AND UPSO FOR DIFFERENT HEAT TRANSFER RATES.

 (W) Kn αc  = 2wc/Hc β = wc /ww Rth (W/K) ΔP (Pa)   (W/K)

HS UPSO HS UPSO HS UPSO HS UPSO HS UPSO HS UPSO

150 0.049 0.019 0.0056 0.0068 2.12 3.33 0.1184 0.1226 125 109 0.032 0.032

200 0.022 0.063 0.0054 0.0045 2.55 2.13 0.1138 0.1132 165 181 0.052 0.053

250 0.035 0.051 0.0044 0.0047 2.32 1.53 0.1089 0.1118 241 204 0.077 0.078

300 0.016 0.089 0.0045 0.0036 2.70 1.84 0.1078 0.1096 272 237 0.106 0.107

350 0.022 0.010 0.0043 0.0043 2.63 1.72 0.1076 0.1053 271 395 0.139 0.141

400 0.023 0.011 0.0039 0.0045 1.77 2.67 0.1052 0.1071 343 309 0.175 0.177

450 0.018 0.034 0.0032 0.0036 2.25 2.22 0.1014 0.1039 513 400 0.215 0.215

500 0.003 0.011 0.0040 0.0037 1.54 2.14 0.1024 0.1018 463 603 0.258 0.261

550 0.018 0.015 0.0033 0.0048 1.54 1.51 0.1010 0.1046 540 442 0.304 0.309

600 0.008 0.032 0.0040 0.0030 1.43 1.66 0.1026 0.1016 471 567 0.356 0.356

650 0.027 0.013 0.0031 0.0032 1.59 1.58 0.0996 0.0999 713 657 0.408 0.407

700 0.009 0.021 0.0033 0.0038 2.06 1.38 0.1008 0.1020 541 552 0.462 0.467

750 0.044 0.009 0.0024 0.0036 1.78 1.90 0.0980 0.1005 930 630 0.522 0.522

800 0.067 0.025 0.0017 0.0029 2.88 1.29 0.0973 0.0997 978 786 0.581 0.585

850 0.028 0.079 0.0023 0.0019 2.65 2.44 0.0976 0.0990 916 784 0.644 0.646

900 0.033 0.064 0.0023 0.0021 2.15 1.72 0.0973 0.0991 955 880 0.709 0.716

950 0.050 0.082 0.0019 0.0024 2.16 1.51 0.0966 0.0992 1085 951 0.777 0.788

1000 0.004 0.091 0.0027 0.0018 1.37 1.50 0.0974 0.0986 973 945 0.848 0.855

Those simulation results could guide us in de-

fining safe operational conditions. 

Figure 10. Variation of the heat sink base temperature 
as a function of the total heat transfer rate, using HS.
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4.3.4. Data Comparison

Finally, we compare our simulated designs (us-
ing HS and UPSO) against those reported by  Khan, 
Kadri and Ali (2013) using Genetic Algorithm (GA). 
In the same way as Khan et al. did, we varied Kn and 
G, and assumed the same design variables (Hc , wc , 
and ww). Results are shown in Table 11. For a given 
value of Kn and G, we obtained quite different as-
pect ratios (αc and β), even though they share the 
same trend. Unfortunately, analysing their data it 
is easy to observe that their results are above the 
upper limit imposed for their simulations (Table 2 
in  Khan, Kadri and Ali (2013)). This hinders a more 
detailed comparison.

5.    CONCLUSIONS AND 
RECOMMENDATIONS

It was accomplished a systematic and 
thorough analysis, related to the effectiveness of the 
optimization algorithms HS and UPSO for the design 
of optimal microchannels. It was also evident that 
the Monte Carlo strategy, a well-known powerful 
technique, can be used as a first approach in design 
engineering, especially to grasp an idea of the 
order of magnitude and of the relative importance 
of the parameters. During this study we explored 
two modern algorithms for optimising the design 

TABLE 11. COMPARISON OF THE MICROCHANNEL HEAT SINK’S DESIGNS OBTAINED USING HS AND UPSO VERSUS 
THE ONES REPORTED IN  KHAN, KADRI AND ALI (2013) WITH GA.

Kn
G 

(m3/s)

αc  = 2wc/Hc β = wc /ww Rth (W/K)  ΔP (Pa) ,min (W/K)

GA HS UPSO GA HS UPSO GA HS UPSO GA HS UPSO GA HS UPSO

0.1

0.005 0.081 0.018 0.018 2.69 1.40 1.38 0.186 0.215 0.215 859 1348 1366 0.267 0.307 0.307

0.007 0.097 0.021 0.021 3.91 1.65 1.63 0.141 0.176 0.175 841 1370 1404 0.222 0.274 0.274

0.009 0.119 0.024 0.024 4.75 1.88 1.95 0.122 0.158 0.160 819 1390 1301 0.202 0.263 0.263

0.01

0.005 0.086 0.024 0.025 3.05 1.95 1.96 0.195 0.212 0.212 1530 1308 1304 0.288 0.303 0.303

0.007 0.104 0.029 0.028 5.20 2.30 2.25 0.153 0.172 0.171 1451 1320 1380 0.250 0.269 0.269

0.009 0.130 0.033 0.032 6.20 2.62 2.52 0.138 0.154 0.152 1439 1324 1400 0.241 0.256 0.257

0.001

0.005 0.091 0.026 0.026 3.11 2.05 1.99 0.198 0.212 0.212 1603 1326 1356 0.293 0.303 0.304

0.007 0.112 0.030 0.030 5.27 2.40 2.36 0.158 0.172 0.172 1500 1346 1350 0.257 0.269 0.269

0.009 0.136 0.034 0.034 7.04 2.74 2.67 0.143 0.153 0.153 1457 1344 1372 0.248 0.257 0.257

of a microchannel heat sink. We found that both 
approaches yielded precise results, even though they 
have some particularities. In the case of Harmony 
Search (HS), we found that it always provided the 
best answer (i.e. the one with the minimum entropy 
generation rate), but its data dispersion was higher 
(about two times), thus allowing Unified Particle 
Swarm Optimisation (UPSO) to generate results with 
a lower average minimum entropy generation rate. 
We also noted that HS presented a greater chance 
(24%) of finding a better solution than PSO (10%). 
Moreover, we determined that HS requires several 
times more iterations than UPSO (about five for this 
particular research) but since each iteration has 
quite a straightforward logic, the convergence time 
of HS ends up being way shorter than UPSO’s (about 
19 times according to our data). We also determined 
that both algorithms seem to be stable when varying 
the material of the heat sink and the heat generation 
rate, providing practical values for the designs. Of all 
the materials tested, it was determined that copper 
generates the minimum entropy. However, a proper 
selection of the material must not only consider 
thermal conductivity, but also variables such as 
manufacturing costs, operating conditions, and 
other factors relevant to the design specifications, 
even its own weight. Nonetheless, HS and UPSO 
behaved quite well for this application, so we 



163

Jorge Mario Cruz Duarte, Iván Mauricio Amaya Contreras, Carlos Rodrigo Correa Cely

ISSN 1794-1237 / Volume 12 / Issue 24 / July-December 2015 / pp. 149-164

recommend using them and invite the reader to test 
them with a multi-objective model that incorporates 
the aforementioned variables in order to achieve 
a more realistic and buildable design. Finally, we 
think these findings can be used by microchannels 
design engineers to significantly shorten the time 
consuming optimal design process.
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