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ABSTRACT

Electric arc furnaces provide a relatively simple way for melting metals. They are used in the production of highly 
purified steel, aluminium, copper and other metals. However, they are considered the most damaging load for electrical 
power systems. It is very important, therefore, to have arc furnace models that can determine the behavior of this type 
of load with a high degree of accuracy. In this way, it would be possible to assess the impact in terms of power quality 
indices for the power system to which they are connected. When using electric arc furnace models in practice, a key issue 
is the calibration of the model’s parameters. In this paper, we show a procedure for calibrating all the parameters of an AC 
electric arc furnace model using real measurements of voltages and currents. A multilayer neural network is used as an 
emulator of the electric arc furnace model. The neural network is trained using data obtained from the simulation of the 
electric arc furnace model implemented in Matlab®-Simulink®. Once the network is trained, the parameters of interest 
are obtained by solving an inverse problem. The results obtained show a maximum percentage error of 4.1% for the rms 
value of the current involved in the electrical arc.

KEY WORDS: Electric arc furnace, calibration of parameters, neural networks, Latin Hypercube, computer emulation. 

CALIBRACIÓN DE LOS PARÁMETROS DE UN MODELO DE HORNO DE 
ARCO ELÉCTRICO EMPLEANDO SIMULACIÓN Y REDES NEURONALES  

RESUMEN 

El horno de arco eléctrico proporciona un medio relativamente simple para la fusión de metales. Se utiliza en la 
producción de acero de alta pureza, aluminio, cobre, plomo, entre otros metales. Sin embargo, los hornos de arco son 
considerados como la carga más nociva para el sistema eléctrico de potencia. Por consiguiente, resulta de gran importancia 
contar con modelos de horno de arco que permitan determinar con alto grado de aproximación el comportamiento de 
este tipo de carga, puesto que se podría evaluar su impacto en términos de índices de calidad de energía para el sistema 
de potencia al cual se conecten. Uno de los principales problemas que surge al utilizar los modelos matemáticos de arco 
eléctrico consiste en la calibración de los parámetros que describen la dinámica del modelo. En este documento se muestra 
un procedimiento para calibrar todos los parámetros de un modelo de horno de arco eléctrico de corriente alterna, dadas 
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1.  INTRODUCTION

The increase in electrical installations with 
electric arc furnaces among their loads has become 
of great interest to energy companies given that this 
load is considered the most damaging for the electrical 
power system in terms of power quality. 

In general, the functions of an electric arc 
furnace are divided between the stages of fusion and 
refining. In the fusion stage, pieces of materials to be 
fused continually short circuit the furnace’s electrodes, 
causing variations in the equivalent impedance of the 
electrodes’ electrical circuit and, therefore, random 
fluctuations in the circuit’s currents. These current 
fluctuations lead to variations in reactive power and 
momentary losses of voltage (flickers) in the load’s 

mediciones reales de tensiones y corrientes. Se utiliza una red neuronal multicapa como emulador del modelo del horno. 
La red neuronal se entrena empleando datos de simulación obtenidos del modelo del horno implementado en el entorno 
Matlab®-Simulink®. Una vez entrenada la red, los parámetros de interés se obtienen resolviendo un problema inverso. 
Los resultados obtenidos muestran un error máximo de 4.1 % en el valor eficaz de las corrientes del arco eléctrico.

PALABRAS CLAVES: horno de arco; calibración de parámetros; redes neuronales; Latin Hypercube, emulación 
por computador.

CALIBRAÇÃO DE PARÂMETROS  DE UM MODELO USANDO FORNO DE 
ARCO ELÉTRICO EMPREGANDO SIMULAÇÃO E REDES NEURAIS

RESUMO

O forno a arco elétrico fornece um meio relativamente simples para a fusão de metais. Ele é usado na produção de 
ferro de alta pureza, alumínio, cobre, chumbo, e outros metais. No entanto, os fornos a arco são considerados a carga mais 
prejudicial no sistema elétrico de potência. Por conseguinte, é muito importante dispor de modelos de forno de arco para 
determinar com um elevado grau de aproximação o comportamento deste tipo de carga, uma vez que poderia avaliar o 
seu impacto em termos de índices de qualidade de energia para o sistema potencial para o que eles se conectam. Um dos 
principais problemas que surgem quando se utiliza modelos matemáticos do arco elétrico é a calibração dos parâmetros 
que descrevem dinâmica do modelo. Este documento apresenta um método para calibrar todos os parâmetros de um 
modelo de forno de arco elétrico de tensao alterna, dadas as medidas reais de tensões e correntes. Utiliza-se uma rede 
neural de multicamadas com um emulador de modelo de forno. A rede neural é treinada usando dados de simulação obtidos 
do modelo de forno usado no ambiente Matlab®-Simulink®. Uma vez seja treinada a rede, os parâmetros de interesse 
são obtidos através da resolução de um problema inverso. Os resultados obtidos mostram um erro máximo de 4,1 % no 
valor eficaz correntes de arco elétrico. 

PALAVRAS-CHAVE: Fornos de arco; Calibração de parâmetros; Redes neurais; Latin Hypercube; Emulação de 
computador.

connection busbar and in other nearby busbars. In 
the refining stage, the circuit’s impedance variations 
decrease, lessening the impact on the power system. 
Electric arc furnaces are also known for being a source 
of harmonics, creating undesirable operating conditions 
for elements connected to the electrical network.

Therefore, being able to model the behavior of 
an electric arc furnace has become very important for 
energy companies (among others) in that it would give 
them a computational tool with which to know the 
impact a furnace could have on the energy system or 
design compensation systems like the static synchro-
nous compensator (D-StatCom) or the static reactive 
power compensator (SVC) (García Cerrada et al., 2000). 
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However, one of the large problems that arise 
when using one of these electric arc furnace models in 
practice is calibrating their parameters. The related 
literature includes articles in which the parameters are 
heuristically tuned based on real measurements of the 
short-term flicker severity index (Pst) or based on the 
furnace’s nominal power. Collantes & Gómez (1997) 
present a methodology for estimating parameters with 
real voltage measurements using the toolbox System 
Identification de Matlab®. Alves et al. (2010) adjust 
the parameters to estimate the Pst of a new installation 
based on a statistical analysis of real Pst measurements 
from similar installations. One criterion for estimating 
the range of variation in the electric arc’s resistance is 
presented in Horton et al. (2009) and is based on curves 
that relate the installation’s power factor in terms of the 
arc’s resistance, also considering typical values taken 
by the real power factor in this type of installation. The 
functionality of these parameter calibration methods is 
based on models that work with data and need a mas-
sive quantity of real measurements from the plant for 
correct calibration. 

Marulanda et al. (2012) consider some of the arc 
furnace model parameters presented in Alzate et al. 
(September, 2010) using one of the most widely used 
classical parameter estimation techniques in practice: 
maximum likelihood estimation (MLE). However, this 
methodology requires transforming the nonlinear 
differential equation that models the electric arc Acha 
et al. (1990) into an equivalent linear equation for the 
parameters of the model being estimated and only al-
lows for the estimation of a subset of parameters for 
that model. 

In this paper, we propose and evaluate a meth-
odology based on neural networks for calibrating 
the parameters of the three-phase arc furnace model 
proposed in Alzate et al. (September, 2010). This model 
was implemented in the Matlab®-Simulink® environ-
ment and used to generate a large quantity of voltage 
and current waveforms for electric arcs using different 
values for the model’s parameters in each simulation. 
The values of the parameters in each simulation were 
obtained using Latin hypercube sampling (Wyss & 
Jorgensen, 1998). The simulation data were used to 
train a multi-layer neural network whose function is to 
serve as a deterministic emulator of the dynamic model. 

Once the neural network was trained, the parameters 
were calibrated by solving an inverse problem in which 
the (real) voltages and currents are known, but the 
parameters of the model that generated said signals 
are unknown. The results obtained were validated by 
comparing the effective values of the real signals and 
the simulated signals with the parameters obtained by 
solving the inverse problem. 

This article is organized as follows: section 2 
presents a description of the arc furnace model, the 
neural network used, the backpropagation algorithm, 
and the method for data sampling; section 3 describes 
the methodology used to generate the training data for 
the neural network and carry out its inversion; finally, 
the results obtained are shown and the study’s conclu-
sions are presented. 

2. THEORETICAL FRAMEWORK.

This section presents the three-phase arc fur-
nace model and describes the neural networks and 
the backpropagation algorithm. It also describes the 
inverse problem and the Latin hypercube method for 
data sampling. 

2.1.  Mathematical model of a three-phase   
 electric arc furnace

The arc furnace model used to estimate its 
parameters is presented in Marulanda et al. (2012), 
so in this study we will give only a short description 
of it. The model is divided into two parts. Initially, the 
nonlinear voltage-current characteristic typical of 
electric arcs is modeled, and then the variable nature 
of the arc’s longitude is considered, moduLating the 
range of the arc’s radius with three low-frequency sig-
nals: a sinusoidal signal, a chaotic signal, and a random 
signal with a Gaussian probability distribution. This is 
done to simulate the fluctuations that are observed in 
real voltage and current waveforms in an electric arc 
furnace. The nonlinear voltage-current characteristic 
of an electric arc is obtained by solving the following 
differential equation (Acha et al., 1990):

dr i2

k1r2 + k2r — – k3 — =0, (1)
dt r2
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in which r is the radius of the electric arc, i is 
the arc’s instantaneous current, and  k1, k2 and k3 are 
parameters related to the electrical power converted 
into heat by the arc. Figure 1 shows a block diagram of 
how to obtain r by taking current i as input.

Figure 1. Solution of the nonlinear differential 
equation in block diagram (1).

u2 g1 ÷ � � ⦙

u3 g2g1= k3/k2     g2= k1/k2

i

+

–

r

In the three-phase arc furnace model, we must 
obtain a respective value of r for each line current. Once 
r has been determined (by phase), the second part of 
the model determines the electric arc’s dynamic volt-
age. To do so, we first modulate the range of r with the 
tree signals, that is, the sinusoidal signal, the chaotic 
signal, and the random signal with Gaussian distribu-
tion. Figure 2 shows the implementation of the model’s 
second phase in a block diagram.

Figure 2. Block diagram for obtaining the electric arc’s 
voltage.
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In the figure above, c is a low-frequency chaotic 
signal generated by Chua’s oscillator (Kennedy, 1993) 
and g is a random signal with Gaussian probability 
distribution (Manchur, 1992). The constants A, B, and 
C represent the range modulation indices for the three 
moduLating signals. Once rd, the electric arc’s dynamic 
voltage by phase, is obtained, it is determined by the 
following equation:

k3v = —— i. (2)
r2

We have used a typical topology for the electri-
cal circuit that feeds the arc furnace (Montanari et 

al., 1994). Figure 3 shows the one-line diagram of the 
circuit, indicating the values used for its components. 

Figure 3. One-line diagram of the arc furnace's 
electrical circuit
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xcc = 0.1 pu Arc furnace 
model

In summary, the parameters to be tuned for the 
arc furnace model using a neural network are  k1, k2, k3, 
A, B, C and f for each phase, a total of 21 parameters..

2.2.  Neural network

Artificial neural networks are parallel systems 
for learning and automatically processing information, 
emuLating the way in which biological neural networks 
function in the human brain. 

2.2.1. Representation of the neural network

The neural networks used in the majority of 
applications are organized in layers and are totally 
interconnected (Hilera González & Tome Garcia, 1995), 
(Rumelhart et al., 1986). These conditions make it 
possible to create a type of simplified graphic notation 
which does not explicitly show the neurons, but rather 
the layers of the network as elements of constructive 
blocks (Quintero, 2004). For the case of a layer of neu-
rons, the simplified graphic notation is that shown in 
Figure 4 (Demuth & Beale, 2002).

Figure 4. Simplified representation of a layer of 
neurons (Demuth & Beale, 2002).

w

+

b1

x
R × 1

S × R

R
S × 1

n f
a

S × 1

1
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Due to the total connection of input signals xi 

with the respective neurons, the number of synaptic 
weights for each neuron is equal (in dimension), and it is 
therefore possible to group said weights in a W matrix, 
called the synaptic weights matrix. 

It is important to note that if an input is not con-
nected to a certain neutron, the matrix notation is still 
consistent with the condition that the corresponding 
weight of said connection is equal to zero. Further, in 
the majority of applications the activation function of 
the input layers and the hidden layers is the same for 
all the neurons in the respective layer. They can there-
fore be unified in a single function block labeled f. The 
synaptic weights of a given neuron with the respective 
inputs xi from the layer can be seen as a row vector, and 
therefore, all the weights in a layer can be represented 
by a weights matrix W.

�
w11 K w1R

�,w = M O M (3)
wS1 L wSR

in which S is the number of neurons in the re-
spective layer and R is the number of (scalar) inputs to 
the layer. In addition to creating a more structural and 
generalized notation, matrix notation is applied in order 
to make a distinction between the input layer’s synaptic 
weights matrices and the connections between inter-
mediate layers and the other layers (hidden, output). It 
is also used to indicate the beginning and end point of 
the connection between layers. By way of example, the 
notation IW1;1 is the synaptic weights matrix of the input 
layer of the neural network, and LW2;1 is the synaptic 
weights matrix that connects the second layer of the 
network with the first. This notation is illustrated in 
Figure 5 (Demuth & Beale, 2002).

Figure 5. Neural network of two layers with 
abbreviation notation (Demuth & Beale, 2002)

IW1;1
 

b1

+

LW2;1 

b2

+

x

n1 n2

a2

a1

11

Input layer Output layer

In accordance with the figure above, the math-
ematical model of the output function a2 of the neural 
network is described by the following equation:

a2= f (W, x) = p (LW2;1 · t (IW1;1 · x + b1) + b2),                  (4)

in which p(z) is the linear activation function de-
fined as purelin(z) = z and t(z) is the hyperbolic tangent 
activation function defined as (Demuth & Beale, 2002)

2
t (z) = ——— –1. (5)

1+e–2z

2.3.  The backpropagation algorithm.

The backpropagation algorithm is a classical rule 
for training neural networks with more than one hidden 
layer (Rumelhart et al., 1986). The basic idea of training 
a neural network consists of finding the parameters  IW, 
LW, b1 and b2, that best fit a set of input and output data. 

Backpropagation network training consists of 
a propagation cycle in two phases. Initially, an input 
example is applied as a stimulus for the network’s input 
layer of neurons and is propagated to the remaining 
layers in the network’s architecture (hidden networks), 
generating a response in the network’s output layer. The 
responses obtained in the output layer’s neurons are 
then compared with the desired output, that is, with the 
output pattern that corresponds to the input stimulus. 
To finish the first phase, an error is calculated for each 
of the neurons in the output layer. 

The algorithm’s second phase consists of propa-
gating the error calculated in the initial phase from 
the output layer toward all the neurons in the hidden 
layers that directly contribute to the output. These in-
termediate layers are assigned an error rate based on 
the contribution of these intermediate neurons to the 
output obtained in phase 1. This process is repeated in 
all the network’s layers until all the neurons in the net-
work have been assigned an error that describes their 
relative contribution to the total error in the output. 
Based on the error received, the synaptic weights of 
each neuron in the network are modified. It is expected 
that for a known input stimulus, the network’s response 
will coincide with the desired output (Hilera González 
& Tome Garcia, 1995).



40

Parameter Calibration for eleCtriC arC furnaCe models using simulation and neural networks

Revista EIA    Rev.EIA.Esc.Ing.Antioq / Escuela de Ingeniería de Antioquia

2.4.  The problem of inversion of feedforward  
 networks

A trained neural network can be considered 
a nonlinear map from the input space to the output 
space (Bao et al., 1999). Once the neural network has 
been trained on the set of training data, all the synap-
tic weights (including biases) in the network remain 
fixed. Thereby, the assignment of the input space with 
the output space is known. This assignment is known 
as feedforward mapping. In general, the correlation of 
feedforward mapping is a relationship of several to one, 
because each of the desired outputs can correspond to 
various different training inputs. Feedforward mapping 
is expressed as follows:

y = f (W ; x) (6)

in which y = [y1, y2, …, ym]T and x = [x1, x2, …, xR]T 

represent the outputs and respective inputs in the net-
work,  W denotes the matrix of fixed synaptic weights 
in the training process, and the function f denotes the 
feedforward mapping defined by the network’s archi-
tecture. On the other hand, the problem of inverting a 
previously trained feedforward neural network (also 
known as network backpropagation) consists of de-
termining the input  x that produces a certain output 
response d = [d1, d2, …, dm]T. These calculated values of  
x are called network inversions or simply inversions. 
The mapping of the output space to the input space is 
known as inverse mapping. In recent years, different al-
gorithms for inverting feedforward networks have been 
proposed. For more information, see (Linden, 1997).

2.5.  Formulating the inversion problem as an   
 optimization problem

Once the network has been trained, the problem 
that arises is finding the inversion of the network that 
produces output d. In order to determine different 
inversions for a given output, the inverse problem is 
formulated as an optimization problem 

minimizex = g (x)
(7)subject to:  xmin  ≤ x  ≤  xmax ,

in which  g(x) is the objective function to be 
minimized, while  xmin and xmax are vectors whose com-
ponents are constant values that represent the range 

of components for input vector x to be determined. The 
objective function of the model proposed in (Jordan & 
Rumelhart, 1992) is described in the following equation:

g(x) =�d–f (W ; x)�2, (8)

in which d is the output vector or validation and  
f is the mathematical model that describes the previ-
ously trained feedforward network. The feedforward 
network inversion algorithm can be summed up in two 
generalized steps. 

Algorithm 1. Inversion of feedforward neural 
networks

Requires: n sets of training data (x-y) and the 
validation vector d.

1: Creating a feedforward model (creating and training 
a feedforward network) (Ec.(6)).

2: Inverting the feedforward network and resolving the 
optimization problem (Ec.(7)).

2.6.  The Latin hypercube sampling method.

The Latin hypercube sampling method consists 
of selecting n values for each of the k components of vec-
tor  x = [x1, x2, …, xR]T in the following way. The range of 
possible values taken by each component of vector x is 
divided into m non-overlapping intervals with a base of 
equal probability. A value is randomly selected for each 
of the m intervals with regards to probability density. 
The m samples thereby obtained for the component  x1 
are combined randomly with the m samples from com-
ponent  x2. These m pairs are again combined with the m 
values for component x3 to form m triplets. The process 
continues in this way until m k-sets have been formed. 
It is helpful to think about these samples of each of the 
k components of vector x as the formation of a matrix in 
which each column contains specific values (samples) 
for each of the components of x, which can be used in a 
computational model.

3. MATERIALS AND METHODS

The section details the methodology used for esti-
mating the parameters of the electric arc furnace model 
defined in section 2.1. It presents how we obtain the 
training data for the neuron network based on the model 
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and also introduces the Matlab® native computational 
tools for training and inverting the neural network.

3.1.  Real database

The real data used to calibrate the arc furnace 
model’s parameters were used by (Cano & Tacca, 2005) 
and consist of measurements of phase voltages in the 
secondary of transformer T2 in Figure 3 and the cur-
rents in the electric arc during five (5) cycles with a 
sampling frequency of 2048 sps (samples per second) 
taken in the furnace’s fusion phase.

3.2.  Data for training the neural network

According to several tests, it is presumed that 
the values of the parameters for the arc furnace model 
synthesized by the real data fall within the range

0,85 · xi ≤ x ≤ 1,15 · xi  , (9)

in which the vector x with dimensions [21×1] rep-
resents the desired model parameters to be calibrated, 
xi is the vector of initial (known) parameters, and the 
inequality of the equation above is applied to each of 
the components of vectors x and xi. The parameters 
for the three-phase arc furnace model are related to 
the elements of vector x as follows:

x = [kα kb kc mα mb mc f ]T, (10)

in which  ka is a row vector whose components 
are the parameters k1, k2 and k3 for phase  a and ma is 
a row vector whose components are the modulation 
indices A, B and C for the same phase. A similar inter-
pretation applies for the other elements of x (kb kc mb 

mc). Finally, f is the row vector whose components are 
the frequencies of the three phases fa, fb and fc, as is 
shown in the block diagram of the model by phase of 
the arc furnace in Figure 2. The components of  xi are 
summarized in the following table. 

Applying the Latin hypercube sampling method 
around the inequality seen in Equation 9, n vectors 
x for training the neural network are generated and 
grouped in the columns of matrix X with dimensions 
[21×n], in which n is the number of examples (or simula-
tions) presented to the network and 21 is the number of 
parameters to be calibrated. In order to determine the 
training patterns for output y of the neural network, it 
is necessary to simulate the arc furnace model n times 
using vectors x to obtain from each simulation the wave-
forms of the currents in the electrical arc and the phase 
voltages in the secondary of transformer T2, which is 
shown in Figure 3. Then, using the short-time Fourier 
transform (Jaramillo & Lopez, 2007) with windows of 
20 ms and an overlap of 37.5%, the spectrum for each 
of the six simulated signals (three voltage and three 
current) is determined. In this way, we form a vector 
of characteristics y for each signal, and each of these 
vectors is grouped in the columns of matrix Y to obtain 
a matrix with dimensions [54×n] to form the output 
training data. For each window, we obtain the mean 
absolute value of the corresponding Fourier transform, 
and this median is used as an output characteristic, that 
is, as part of matrix Y. 

Figure 6 summarizes the application of the 
methodology used to determine the (X, Y) input-output 
training data set for the neural network.

This is how we complete the (X, Y) input-output 
training set needed to train the neural network. Now 
we only need to determine the validation data vector d 
with dimensions [54×1], which consists of the spectrum 
of real waveforms of the voltages and currents in the 
secondary of transformer T2 in the same was as dur-
ing the training. The characteristics of the validation 
signals are described in section 3.1..

3.3.  Training and inversion of the neural network

The neural network is trained using the Neural 
Network Toolbox with 500 simulations to construct 

Table 1. Initial values for parameters of the arc furnace model xi

Phase a Phase b Phase c

k [11283  7,5  9,8] [12067  6,5  8,0] [9789  5,1  9,8]

m [0,0140,021 0,0019] [0,0210,025  0,0024] [0,0280,024  0,021]

f 14,6 16,4 15,1
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the training set (X, Y) in order to avoid possible over-
training. It is worth noting that for the neural network 
training, the three-phase arc furnace is considered a 
unit due to the interrelation between the currents and 
voltages of the three-phase furnace.

Once the neural network has been trained, the 
inverse problem is solved by applying Equations 7 and 
8. Thereby, for a feedforward network with a hidden 
layer with a sigmoidal activation function and an output 
layer whose activation function is linear, the optimiza-
tion problem set out in Equation 7 is transformed into 
the following equation:

minimizarx = (x)=  d– p (LW2;1 ∙ t(IW1;1∙ x + b1) + b2)  
2
,

sujeto a : xmin ≤ x ≤ xmax.                        (11)

in which p is the linear function and t is the sigmoidal 
function. To solve Equation 11, we used the fmincon 
function in the Optimization toolbox, which finds the 
minimum of a non-linear function with several variables 
subject to various restrictions using the trust region re-
flective optimization method (Coleman & Li, 1996). The 
number of iterations used in the inversion algorithm is 
based on a tolerance of 1e-6 (if the algorithm does not 
converge to the tolerance value, the number of iterations 
for the method is 1000). 

4.  RESULTS

This section presents the results obtained from 
the three-phase electric arc furnace model parameter 
calibration methodology using neural networks and 
real data. It also includes a comparison of some charac-
teristics of real wave forms (of voltages and currents) 
and those synthesized by the model. 

The tests consisted of training and inverting a 
neural network with a hidden layer. For each experi-

ment, the number of neurons in this layer was modified. 
In the first test, 1 neuron was used in the hidden layer. 
After the neural network training phase, the inverse 
problem stated in Equation 11 is solved in order to 
obtain the parameters for the arc furnace model. Once 
the arc furnace model parameters have been obtained, 
the simulation is run. The real waveforms (of voltages 
and currents) from the plant were then compared with 
the simulated waveforms. The procedure was then 
repeated, varying the number of neutrons in the hid-
den layer, increasing by 5 neurons in each test until a 
maximum of 50 neurons was reached. The results of the 
effective errors between the real data and the model-
generated data for 40, 45, and 50 neurons are shown in 
the following table.

Table 2. Errors obtained for different configurations of 
the neural network

Neurons Va Vb Vc Ia Ib Ic

45 1,17 2,79 2,94 0,88 0,08 4,1

50 4,81 10,22 0,41 5,83 13,13 1,74

55 1,65 0,07 0,12 3,35 2,14 2,83

In the table above, we can see that, independent 
of its topology (the number of hidden layers and the 
number of neurons per hidden layer), the neural net-
work satisfactorily emulates the non-linear dynamic 
of the arc furnace. Although the experiments can be 
done for different configurations in order to reduce 
the percentage error, the methodology is still valid and 
independent of the neural network.

In Table 2 Va and Ia reference the phase voltage 
in the secondary of transformer  T2 and the current in 
the electric arc for phase a, respectively. There is no 
difference for the remaining voltages and currents. The 
percentage error calculation is obtained based on the 
following equation:

Figure 6. Diagram that allows us to determine the training pairs for the neural network.

Sampling of x using Latin 
hypercube

 Furnace model simulations using X

Characterization of voltage and current signals using short-
time Fourier transform

Signals generated by simulating the furnace 
model in Simulink®

X [21×1] X [21×n]

Y [54×n]
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�
real value– measured value

� -100 %e (%) =
real value

in which ‘real value’ references the rms of the 
real signal, while ‘measured value’ references the rms 
of the signals obtained by applying the methodology. 
The following table shows the values obtained for the 
components of vector x after solving the optimization 
problem given in Equation 11 using 45 neurons for the 
hidden layer. 

Based on the results in the table above, the arc 
furnace model simulation was carried out. The simu-
lation showed that these parameters do not affect the 
stability of the electrical circuit shown in Figure 3. A 
comparative graph of the real and simulated signals for 
the phase voltages can be seen in the figure below with 
a time interval of 0.12 seconds. The real signals corre-
spond to the waves graphed with a solid line, and the 
simulated signals have been graphed with dotted lines. 

Figure 7. Real and simulate waveforms for the phase 
voltages of the electric arc furnace
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In this figure, we can see that the arc furnace 
model captures the non-linear nature of the real volt-
ages and also that the values of the parameter vector 
components obtained with the algorithm allow us to 
obtain voltage levels similar to real levels. The percent-
age error obtained for the phase voltages was 1.17% 
for phase a, 2.79% for phase b, and 2.94% for phase c. 

The following figure shows the real and simu-
lated instantaneous currents of the electric arc in each 
of the phases with a time of 0.12 seconds.

Figure 8. Real and simulated waveforms for the line 
currents of the electric arc furnace.
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In the figure above, we can see that the simulated 

currents follow the real currents with a high degree 
of precision in some cycles and that in the remaining 
cycles, the currents move apart at the positive and nega-
tive extremes. The percentage errors obtained for the 
electric arc currents were 0.88% for phase a, 0.08% for 
phase b, and 4.1% for phase c.

5.  CONCLUSIONS

Based on the results obtained, we can conclude 
that the inversion of a neural network applied to the 
synchronization of arc furnace model parameters gives 
results similar to the real data from the plant. Care 
must be taken with the respective configuration of the 
network (number of layers and number of neurons per 
layer) due to the strong dependence of calculated er-
rors for voltages and currents in the electric arc on this 
configuration. 

According to the results obtained, the methodol-
ogy implemented in this study allows us to represent 
the waveforms of the voltage signals by phase for a real 
electric arc furnace with a high degree of accuracy. In 
addition, we obtained a maximum percentage error 

Table 3. Results obtained for x by the neural network with real signals.

Phase a Phase b Phase c

k [10440  7,05  10,28] [12752  6,63  9,19] [9525  5,86  9,73]

m [0,012  0,02  0,0021] [0,019  0,025  0,0026] [0,024  0,02  0,002]

f 15,88 16,04 12,83
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of 4.1% in the rms for the electric arc currents with 
regards to the real signals. Finally, it is important to 
mention that the model approximated the waveforms of 
the voltage signals better than those of the current due 
to the lower fluctuation of the voltage signals compared 
to the strong variations shown in the current waves.   
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