
DESIGN OF A PROGRAMMABLE MICROSYSTEM FOR DIGITAL AUDIO
EFFECTS USING FPGAS

John Michael espinosa-Duran1

peDro p. liévano-Torres2

clauDia p. renTería-MeJía3

 JaiMe velasco-MeDina4

ABSTRACT

This paper describes the design of a programmable microsystem for processing digital audio effects implemented
in an FPGA. The microsystem is designed using an application-specific reconfigurable processor, a bank of RAMs, and a
graphical user interface based on an LCD touch panel. The processor is designed using 15 audio effects based on delays
and dynamic domain and frequency domain processing. The effects are designed using Megafunctions and the Quartus II
FIR compiler , simulated in Simulink using DSP Builder, and configured using a user graphic interface. The programmable
microsystem is implemented on the DE2-70 development board, and its operation is verified using an MP3 player and a
speaker. Additionally, the microsystem allows the generation of effects with high fidelity using a maximum sample rate
of 195.62 MSPS and can be embedded into a SoC.

KEYWORDS: digital audio effects, dynamic domain, frequency domain, embedded systems, FPGAs

 DISEÑO DE UN MICROSISTEMA PROGRAMABLE PARA EFECTOS
DE AUDIO DIGITAL USANDO FPGAS

RESUMEN

Este artículo describe el diseño de un microsistema programable para el procesamiento de efectos de audio digital
implementado en un FPGA. El microsistema es diseñado usando un procesador de propósito específico y reconfigurable,
un banco de RAMs y una interfaz gráfica de usuario basada en una pantalla táctil LCD. El procesador es diseñado usan-
do 15 efectos de audio basados en retardos y procesamiento en el dominio dinámico y de la frecuencia. Los efectos son
diseñados usando Megafunciones y el compilador FIR de Quartus II, son simulados en Simulink5 usando DSP Builder6, y

1 Electronic Engineer, Universidad del Valle. Master’s in Engineering, Universidad del Valle. Doctoral student in Chemistry and As-
sociate Professor at the University of Indiana, Bloomington, USA.

2 Electronic Engineer, Universidad del Valle. Coordinator of projects and development in IP Innovatech, Cali, Colombia.
3 Electronic Engineer, Universidad del Valle. Master’s in Engineering, Universidad del Valle. Doctoral student in Engineering at the

Universidad del Valle, Cali, Colombia.
4 Electrician Engineer, Universidad del Valle. Ph.D. in Microelectronics, Institute National Polytechnique de Grenoble, Grenoble,

France. Professor and director of Bionanoelectronics research group, Engineering and Electronics School, Universidad del Valle,
Cali, Colombia.

5 Entorno de programación visual de Matlab
6 Herramienta de desarrollo usada como interface entre el software Quartus II y Matlab/Simulink

DOI: http:/dx.doi.org/10.14508/reia.2014.11.22.133-146

Paper history:
Paper received on: 8-X-2013 / Approved: 17-III-2014
Available online: December 30 2014
Open discussion until December 2015

Correspondence author: Velasco-Medina, J. (Jaime). Univer-
sidad del Valle: Calle 13 # 100 - 00, Cali (Valle, Colombia).
Tel: (572) 3303436.
Email: jaime.velasco@correounivalle.edu.co

Revista EIA, ISSN 1794-1237 / Year XI / Volume 11 / Issue N.22 / July-December 2014 / pp. 123-136
Technical-scientific biannual publication / Escuela de Ingeniería de Antioquia —EIA—, Envigado (Colombia)

124

Design of a Programmable microsystem for Digital auDio effects using fPgas

Revista EIA Rev.EIA.Esc.Ing.Antioq / Escuela de Ingeniería de Antioquia

son configurados utilizando una interfaz gráfica de usuario. El microsistema programable es implementado en el sistema
de desarrollo DE2-70, y su funcionamiento es verificado usando un reproductor MP3 y un parlante. Adicionalmente, el
microsistema permite la generación de efectos con alta fidelidad usando una tasa de muestreo máxima de 195.62 MSPS,
y puede ser embebido en un SoC.

PALABRAS CLAVES: efectos de audio digital; dominio dinámico; dominio de la frecuencia; sistemas embebidos;
FPGAs.

PROJETO DE UM MICROSISTEMA PROGRAMÁVEL PARA EFEITOS DE
ÁUDIO DIGITAL USANDO FPGAS

RESUMO

Este artigo descreve o desenho de um microsistema programável para o processamento de efeitos de auidio digital
implementado em um FPGA. O microssistema é projetado usando um processador específico e reconfigurável um banco
de RAMs e uma interface gráfica de usuario baseada em uma tela sensível ao toque de LCD. O processador foi projetado
com 15 efeitos de áudio com base em atrasos e domínio de processamento e frequência dinâmica. Os efeitos são projeta-
dos usando Megafunciones e o compilador FIR de Quartus II são simulados utilizando Simulink 1 usando DSP Builder2 e
são configurados através de uma interface gráfica de usuario. O microssistema programável é implementado no sistema
de desenvolvimento DE2-70, e seu desempenho é verificado através de um leitor de MP3 e um alto-falante. Além disso,
o micro-sistema permite a geração de efeitos, com elevada fidelidade, utilizando uma taxa de amostragem máxima de
195,62 MSPS, e pode ser incorporado em um SoC.

PALAVRAS-CHAVE: efeitos de áudio digital, de domínio dinâmico, domínio da freqüência, sistemas embarcados, FPGAs.

1. INTRODUCTION

Audio effects are used by musicians to create
special sounds when playing an instrument. These
effects can be created using analog or digital process-
ing systems. Nowadays, digital audio effects are more
widely used and are implemented with electronic sys-
tems that perform delay-based, dynamic domain, or
frequency domain processing (Zölzer, 2002).

Digital audio effects are generally implemented
on DSPs, PCs, or GPUs (Berdahl & Smith, 2006), (Fernan-
dez & Casajus, 2000), (Guillermard, Ruwwue & Zölzer,
2005), (Karjalainen, Penttinen & Valimaki, 2000), (Ling,
Khuen & Radhakrishnan, 2000), (Oboril et al., 2000),
(Schimmel, Smekal & Krkavec, 2002), (Tsai, Wang &
Su, 2010), (Verfaille, Zölzer & Arfid, 2006). However,
the designs presented in the papers mentioned do not
have high sampling rates, and the majority of the effects
are based on delays. Pfaff et al. (2007) implemented
the chorus, delay, echo cancellation, flanger, and wah-
wah effects using hardware-software co-design. The
flanger effect was implemented using a lookup table

to generate the sinusoidal signal, and the wah-wah
effect was implemented using a second-order allpass
filter and a lookup table to vary the cut-off frequency,
but the study does not present verification tests of the
designs on hardware. Byun et al. (2009) implement
reverb, chorus, flanger, phaser, tremolo, auto wah, pitch
shift, distortion, and multi-band equalizer effects using
C language and an embedded DSP in an FPGA. However,
this article does not describe the algorithms used to
implement these effects in detail, nor does it present
verification tests of the designs. In a previous study
(Liévano, Espinosa y Velasco, 2013), we implemented 14
audio effects using delay-based processing (5), dynamic
domain processing (8), and frequency domain process-
ing (1). These effects are described in VHDL, simulated
in Simulink using DSP Builder, and synthesized in an
FPGA using Quartus II.

Considering the information above, in this article
we present the design of a microsystem for processing
digital audio effects based on a dedicated and configu-
rable processor. The microsystem was implemented in

125ISSN 1794-1237 / Volume 11 / Issue 22 / July-December 2014 / pp. 123-136

John Michael espinosa-Durán, peDro p. liévano-Torres, clauDia p. renTería-MeJía, JaiMe velasco-MeDina

the development system DE2-70, and the processor was
synthesized in this card’s FPGA.

The main contribution of this article is the design
of a digital audio effects processor in real time with
very high fidelity due to the fact that it has a sampling
rate of 195.62 MSPS using 16 bits of data. The sampling
rate corresponds to the processor’s maximum operating
frequency (195.62 MHz). In addition, the processor we
designed allows for the generation of uncommon audio
effects since it is possible to mix effects of different and/
or the same processing type. We implemented 15 audio
effects on this processor, 14 of which were presented
in Liévano, Espinosa & Velasco (2013). However, the
chorus, reverb, and wah-wah effects were redesigned,
and a multi-band equalizer was added. The microsystem
verification tests were completed using an MP3 player
and a speaker connected to the DE2-70 card’s audio
input and output terminals, respectively.

This article is organized as follows: section 2 de-
scribes the design methodology for the chorus, reverb,
wah-wah, and multi-band equalizer effects; this section
also presents the microsystem design and the graphical
user interface. Section 3 presents the synthesis results
and hardware verification tests. Finally, section 4 pres-
ents our conclusions.

2. METHODOLOGY

The design of the hardware system for process-
ing digital audio effects was completed in four stages:
a) selection and functional simulation of the effects in
Simulink using DSP Builder; b) implementation of the
effects on the hardware using Quartus II and verification
of effects using Matlab to graph the output signals; c)
design of the processor and tactile graphic interface for
configuring the effects parameters; d) design and verifi-
cation of the microsystem for processing audio effects.

2.1. Selection and functional simulation

 of audio effects

The audio effects selected are delay-based or
based on dynamic domain or frequency domain pro-
cessing. These effects are implemented in the proces-
sor, and 14 of them are described in (Liévano, Espinosa
& Velasco, 2013). In addition, we added a multi-band
equalizer and redesigned the chorus, reverb, and wah-

wah effects. The functional simulation of these audio
effects was completed in Simulink using DSP Builder.

2.1.1 Delay-based processing
Delay-based processing consists of adding the

audio signal to itself, attenuated and/or out of phase.
Five effects of this type were implemented on the pro-
cessor, in which delay, flanger, and phaser are described
in Liévano, Espinosa & Velasco (2013), and chorus and
reverb are described below.

Chorus is described by Equation 1 and is an
effect that emulates two or more musicians simultane-
ously playing the same instrument and the same piece of
music (Zölzer, 2002). This effect is obtained by adding
the current input signal with a previous input signal
attenuated by random factor g.

 y (n) = x(n)+ g * x (n + del) (1)
In which is the delay between 10 and 25 ms.
The reverb effect is described by Equation 2 and

is generated when the audio signal’s acoustic reflexes
are added to the audio signal. This effect is emulated by
adding the input signal with its respective responses,
which have different delays and attenuations (Zölzer,
2002).

y(n) = x(n)+g1x(n+del)+g2 x(n+2del)+g3 x(n+3del)
+ g4 x(n+4del) (2)

2.1.2 Dynamic domain processing

This type of processing is generally non-linear
and considers the signal’s dynamic. Eight effects were
implemented on the processor: compressor, expander,
noise gate, soft and hard clipping, sigmoidal distortion,
sigmoidal piecewise distortion, polynomial distortion,
and ring modulator, which are described in Liévano,
Espinosa & Velasco, (2013).

2.1.3 Frequency domain processing

Frequency domain processing is based on
modifying the sound spectrum using digital filters
(Khosravi, 2007). Two effects were implemented on
the processor: wah-wah and multi-band equalizer. The
wah-wah effect is obtained by filtering the input signal
using a narrow band-pass filter with a variable central
frequency, which generates a sound similar to the word
‘wah-wah’ (Zölzer, 2002). The multi-band equalizer

126

Design of a Programmable microsystem for Digital auDio effects using fPgas

Revista EIA Rev.EIA.Esc.Ing.Antioq / Escuela de Ingeniería de Antioquia

effect modifies the audio spectrum of a signal through
the amplification of certain frequency bands. This effect
is implemented using first- and second-order shelving
and peak filters which are connected in series and in-
dependently controlled. The shelving filters amplify or
attenuate the high and low frequency bands using the
cutoff frequency parameters fc and gain G. Peak filters
amplify or attenuate medium frequency bands using
the cutoff frequency parameters fc, band width fb, and
gain G (Zölzer, 2002).

2.2. Implementation on hardware and

 verification of audio effects

2.2.1 Chorus and reverb implementation

These effects use a circular buffer which is
implemented on a dual-port RAM (Altera, 2011). The
write and read directions on the 16Kx16-bit RAM are
generated by a 14-bit counter. In this case, read used
an indexed direction in which the index is the delay
described by Equation 3 (see Figure 1).

del
retardo = * fs (3)

1000

Figure 1. Circular buffer block diagram

Counter RAM

+

X (n)

Delay

Write-Dir

Read-Dir

X (n+del)

The chorus effect is designed using a circular
buffer, an adder, a right-shifter, a low-frequency NCO,
and an LFSR (Pérez, 2006) as shown in Figure 2. In a
previous study (Liévano, Espinosa & Velasco, 2013), the
chorus effect delay is implemented using an LFSR, but in
this study the delay is implemented with an NCO given
that Pérez (2006) recommends using an LFO.

Figure 2. Chorus block diagram

+

X(n)

Y(n)

NCO

Circular
Buffer

R- Shifter

LFSR

g

The reverb effect is designed using four circular
buffers, four right-shifters, a low-pass IIR filter, and
four adders (Pérez, 2006) as shown in Figure 3. In
this case, four configurable values were used for the
attenuation and delay in order to emulate the input
signal’s acoustic reflexes. The first values for attenua-
tion and delay are configuration parameters, and the
other values are generated by multiplying the first
values by 2, 4, and 8. The IIR filter was implemented
using Equation 4.

Y(n) = 0.4y(n) – 0.2499y(n-2) + 0.0441y(n-3) +
0.5814x(n-1) + 0.2142x(n-2) (4)

Figure 3. Reverb block diagram

In a previous study (Liévano, Espinosa & Velasco,
2013), the reverb effect was implemented without us-
ing an IIR filter, but in this study we used a low-pass
IIR filter in order to obtain a realistic emulation of the
reverberation (Pérez, 2006).

2.2.2 Wah-wah implementation

The wah-wah effect is implemented using a
30-order band-pass FIR filter, which is designed us-
ing a Hamming window, a symmetrical architecture,
a configurable central frequency, and a bandwidth of
1000 Hz. In this case, the FIR filter is configured from
the touch screen (see Figure 11), specifically by varying
the wah-wah control icon and selecting one of the FIR
filters presented in Table 1. For example, FIR filter 6 has
lower and upper cutoff frequencies of 750 Hz and 1750
Hz, respectively. Therefore, the wah-wah sound will be
generated if the audio signal is within the respective
window of the selected filter.

+

127ISSN 1794-1237 / Volume 11 / Issue 22 / July-December 2014 / pp. 123-136

John Michael espinosa-Durán, peDro p. liévano-Torres, clauDia p. renTería-MeJía, JaiMe velasco-MeDina

The 30-order FIR filter’s implementation on the
hardware used 16 coefficients and was designed using
Altera’s FIR Compiler 10.1 (Altera, 2013). In this design,
16 16x16-bit RAMs were used to store the 16 coefficients
for each of the 16 filters presented in Table 1, in which
the coeff-set signal is the direction for selecting the fil-
ter coefficients. Figure 4 shows a block diagram of the
configurable FIR filter.

Table 1. Wah-wah low-pass filter configuration
parameters

Filter Coeff-set
Lower cutoff

frequency (Hz)
Upper cutoff

frequency (Hz)

1 0000 1.000 ---------

2 0001 150 1.150

3 0010 300 1.300

4 0011 450 1.450

5 0100 600 1.600

6 0101 750 1.750

7 0110 900 1.900

8 0111 1.050 2.050

9 1000 1.200 2.200

10 1001 1.350 2.350

11 1010 1.500 2.500

12 1011 1.650 2.650

13 1100 1.800 2.800

14 1101 1.950 2.950

15 1110 2.100 3.100

16 1111 2.250 3.250

Figure 4. Wah-wah block diagram.

Coeff
Mem

0

Coeff
Mem 1

Coeff
Mem

15

+ + +

* * *

+

X(n)

Y(n)

coeff_set

2.2.3 Implementation of multi-band equalizer

Holters & Zölzer (2006) propose designing a
three-band digital parametric equalizer using a sam-
pling rate of 48 kHz. The equalizer is implemented as a
cascade of shelving filters. In this case, we designed the
multi-band equalizer to attenuate or amplify compo-
nents of low, mid-low, mid-high, and high frequencies. It
is implemented using four 100-order FIR filters and four
configurable displacement registries. One low-pass and
three band-pass filters are used. They are designed with
a Blackman window using an FIR Compiler, and their
cutoff frequencies are presented in Table 2. The L-R
shifter displacement registries amplify or attenuate the
output signal of the FIR filters, multiplying or dividing
the signal by 2n, where n is equal to one or two. Figure
5 shows a block diagram of the multi-band equalizer.

Table 2. Multi-band equalizer FIR filters

Filter
Lower cutoff frequency

(Hz)
Upper cutoff

frequency (Hz)

1 125 ------------

2 125 500

3 500 2.000

4 2.000 20.000

Figure 5. Multi-band equalizer block diagram

Filter 1

Filter 2

Filter 3

Filter 4

L-R shifter

L-R shifter

L-R shifter

L-R shifter

+

X(n)

Y(n)

The design of each audio effect was verified by
calculating the correlation between the results of the
functional simulation in DSP-Builder, which uses a 64-bit
floating-point arithmetic, and the results of the verifi-
cation with hardware, which used 16-bit fixed-point
arithmetic. In this case, the error was calculated using
Equation 5, in which Ym*Yr is the correlation between
the simulation results and the hardware verification
tests.

 error = 100 × (1- (Ym * Yr)) (5)

128

Design of a Programmable microsystem for Digital auDio effects using fPgas

Revista EIA Rev.EIA.Esc.Ing.Antioq / Escuela de Ingeniería de Antioquia

The processor is designed using a data flow unit
and a control unit, as is shown in Figure 6. The data flow
unit is designed using an arrangement of digital audio
effect blocks (FX Arrangement) and a bank of RAMs for
storing each block’s effect configurations. The control
unit is designed using a state machine (FSM) described in
behavioral VHDL. In addition, the processor has a serial
input registry and 16-bit parallel output (Reg-In) for stor-
ing the input signal Xi ,and a 16-bit parallel input registry
and serial output (Reg-Out) for storing the output signal Yi.

The FX arrangement is implemented using 10
digital audio effect blocks, FX1-FX10, connected in a
cascade, as is shown in Figure 7. The order or sequence
of the cascade of effect blocks corresponds to that used
by commercial pedal manufacturers (Sound Laboratory
Zoom, 2013). The two effect blocks adapt the signal to
be processed by the other blocks; that is, the noise gate
effect eliminates the signal noise, and the compres-
sor/expander block compresses or expands the signal
according to its voltage level. The order of the ring
modulator, phaser/flanger, chorus, and delay effects is
irrelevant. The multi-band equalizer and reverb effects
improve the audio signal processed by the previous
effects. The wah-wah effect comes at the end of the
cascade because its implementation requires many area
resources, which implies that the signal is degraded
when this block is located among the other effects. The
majority of the blocks have one effect, except blocks FX2,

FX3, and FX6, which have 2 or 3 effects. The blocks are
configured using 10 registries, RC1-RC10, which store
the 16-bit configuration word for each effect, and the
output of each block is connected to a multiplexer, which
allows us to select the input signal for the next block. In
other words, the multiplexers allow us to select the set
of effect blocks that process the input signal Xi.

The memory bank is made up of 10 RAMs, and
each RAM has 32 16-bit words, where each word stores
an audio effect configuration. For example, if a block has
only one effect, this effect can have 32 configuration
options. The first 16 positions of each RAM store the
predetermined configurations for each effect block using
a .mif file, and the last 16 positions of each RAM are used
to store the new configurations developed by the user.

The effect configuration in each of the Mi RAMs
is completed using the write signal WE, the direction
signal Dir, and the 16-bit configuration word obtained
from the Mod-Par-FX block, which is based on compara-
tors and multiplexers, as shown in Figure 8.

We can see in Figure 8 that modifying one of
the effect configuration word parameters is done if
the values of the signal FX&Mpar (FX effect and Mpar
parameter) and the constant Consti are equal. If this is
not the case, the configuration word is not modified.
We can also see that the FX effect code has 4 bits, the
parameter Mpar code has 3 bits, the parameter value

Figure 6. Digital audio effects processor architecture

MPF1
MPF2
MPF3
MPF4
MPF5
MPF6
MPF7
MPF8
MPF9

MPF10

M1
M2
M3
M4
M5
M6
M7
M8
M9

M10

mx_touch

my_touch
FSMI FX

Arrangement

Data flow unit

FX Processor

Control
Unit

RAM
BanksMod-Par-FX

Dir

Mpar

FX

Nmpar

C1-C10

5
/

4
/

3
/

4
/

10
/

11
/

11
/

160
/

Par-FX
160

/

X(n)
16
/

Y(n)
16
/

Reg-In

Reg-Out

Xi

Yi

129ISSN 1794-1237 / Volume 11 / Issue 22 / July-December 2014 / pp. 123-136

John Michael espinosa-Durán, peDro p. liévano-Torres, clauDia p. renTería-MeJía, JaiMe velasco-MeDina

Nmpar has 2, 3, or 4 bits, and each constant Consti has 7
bits, where i is a whole number between 1 and 4.

The processor’s control unit is implemented
using the FSM1 state machine, which controls the user
interface’s LCD touch screen sonsor and generates the
control signals for the FX arrangement, the Mod-Par-
FX block, and the bank of RAMs. The FSM1 constantly
supervises the graphical interface’s graphic objects or
icons in order to generate the control signals that al-
low for modification of an effect’s configuration word.
This procedure is completed in four steps: 1) loading
one of the 16 predetermined configurations in each RC
configuration registry for each effect block, 2) select-
ing the set of audio effect blocks in the FX arrangement
that will process the digitalized audio signal X(n) using
signals C1-C10, 3) loading the new configuration deter-
mined by the user in the RAM that corresponds to the
effect block (his configuration is made by modifying a
predetermined configuration found in one of the RAM’s
first 16 positions or by generating a new configuration
to be stored in one of the RAM’s last 16 positions), and
4) loading the new configuration from the RAM into the
RC registries; that is, a predetermined configuration, a
modified predetermined configuration, or a new con-

figuration. Figure 8 shows the ASM (Algorithmic State
Machine) diagram of the FSM1.

Figure 9 shows that the control signals Ini-Conf
and Fin-Conf are used to initiate and finalize a new con-
figuration, respectively. These two signals are generated
by the used from the touch screen using the LTM-SoPC
controller (Altera, 2011a).

2.4. Design of hardware microsystem for

 processing audio effects

In order to use the processor in a real applica-
tion, we designed a processing microsystem for the
electric guitar, which is implemented using a hardware
unit and a graphical user interface based on an LCD
touch screen to configure the processor designed. The
hardware unit is implemented in the Terasic DE2-70
development system using the FPGA, the codec, and
the DRAM memory. In the FPGA, we synthesized the
audio effects processor, three ROM memories, and the
LTM-SoPC controller for the LCD touch screen (LTP:
LCD Touch Panel) as shown in Figure 10.

Figure 7. Audio effects processor FX arrangement

130

Design of a Programmable microsystem for Digital auDio effects using fPgas

Revista EIA Rev.EIA.Esc.Ing.Antioq / Escuela de Ingeniería de Antioquia

Figure 9. ASM diagram of FSM1

The graphical user interface is designed using

the FSM2 state machine which generates pixels on the

LCD touch screen corresponding to the images for the

background and the fixed and variable graphic objects.

The latter are generated by the hardware unit and could
be, for example, the image for sound volume.

The FSM2 controls generation of the images
using information stored in the three ROM memories
and completes the transfer of the images to the RAM
memory and the LCD touch screen using the LTM-SoPC
controller.

Figure 11 shows the graphical user interface,
which includes the following graphic objects and their
respective visualizers: effects, parameter, parameter
value, sector, patch, volume, wah-wah control, and save.
An effect’s parameter is modified by selecting a sector
and a patch, which can be used to direct the position of
the RAM memory where the new effect configuration
word will be stored.

The graphical interface has sectors A, B, C, and
D to select the 32 configuration words. Each sector has
eight memory positions, and each position in the sector
is called a patch. Sectors A-B and C-D allow the user to
direct the first 16 and last 16 positions on the Mi RAM,
respectively.

The parameter of an effect’s configuration word
is modified as follows: 1) selecting one of the ten effect
blocks; 2) selecting the parameter, and 3) modifying the
parameter value. Figure 12 shows the graphical user
interface displayed on the LCD touch screen.

Figure 8. Block diagram of effect parameters configuration

131ISSN 1794-1237 / Volume 11 / Issue 22 / July-December 2014 / pp. 123-136

John Michael espinosa-Durán, peDro p. liévano-Torres, clauDia p. renTería-MeJía, JaiMe velasco-MeDina

Figure 10. Audio effects microsystem block diagram

ROM-Icon
ROM-Num
ROM-CarFSM2

FX ProcesorLCD Touch

Screen

LTM-Core CODEC

SSRAM

mx_touch

my_touch

Xi

Yi

Audio in

Audio out

DE2-70

Cyclone II

Figure 11. Graphical user interface for programming digital audio effects

FX1 FX2 FX3 FX4 FX5
FX6 FX7 FX8 FX9 FX10

Effect Save

Parameter
value

Parameter

Wah-wah
control

Sector Patch Volume

L R

A 1
Vol01

FX

2.5. Verification of the microsystem for

 processing audio effects

The microsystem is verified using an MP3 player
and a PC. Initially, each of the processor’s effect blocks
were verified, and then functioning verifications were
completed for two sets of effects connected in cascade.
To verify each effect in the processor, we used an audio
signal stored in an MP3 player whose audio output was
connected to the analog input of the DE2-70 develop-
ment system’s codec. Figure 13 shows the test audio
signal in the codec’s input, which was configured to
sample the signal at a frequency of 44.1 kHz. The 16-
bit Xi digitalized audio signal is then obtained from
the codec’s output. This signal has a two’s complement

representation format and is used as the input signal
for the processor.

Figure 12. User interface visualized on LCD touch screen

132

Design of a Programmable microsystem for Digital auDio effects using fPgas

Revista EIA Rev.EIA.Esc.Ing.Antioq / Escuela de Ingeniería de Antioquia

Figure 13. Audio signal at codec analog input
A

m
pl

itu
de

Time (us)

Figure 14. Reverb effect output signal: a) Matlab
simulation. b) processor.

A
m

pl
itu

de

Time (ms)
a)

Am
pl

itu
de

Time (μs)b)

The output signal Yi from the audio effect proces-
sor is connected to the codec’s digital input. The codec’s
analog output is connected to the audio input of a PC.
The analog signal generated by the codec is digitalized
by the PC’s codec, and this signal is graphed using Mat-
lab. Figure 14 shows the reverb effect’s output signal
simulated in Matlab using a sinusoidal signal as input
and the processor’s output signal Yi for the same effect
using the audio signal as input.

We can observe in Figure 14 that the reverb ef-
fect’s output signal simulated in Matlab is similar to the
processor’s output signal for the same effect.

3. RESULTS

The audio effect processor, the three ROM
memories, the FSM2 state machine, and the LTM-SoPC
controller are synthesized on the EP2C70F896C6 FPGA
using 30,040 ALUTs (Adaptative Look-Up Tables) and
10,239 registries which correspond to 44% and 15%
of the FPGA’s area resources, respectively. The proces-
sor’s maximum operating frequency is 195.62 MHz. In
addition, Table 3 presents the area resources used in
the FPGA for each audio effect block with regards to
the microsystem’s total resources. We can conclude
from the results in Table 3 that the chorus effect uses
the least area resources, while the wah-wah effect uses
the greatest amount of area resources, corresponding
to 80% of the microsystem’s total resources.

Table 4 shows the area resources of the micro-
system’s blocks in the FPGA and the percentage of area
resources for each microsystem block with regards to
the microsystem’s total area resources. We can conclude
from these results that the FX arrangement block uses
the greatest amount of area resources, which is 92%
for ALUTs and 62% for the registries.

In order to experimentally verify (an auditory
procedure) the microsystem’s functioning for process-
ing audio effects, we implemented two processor con-
figurations and used two signals: a sinusoidal signal
and a song played on an MP3 player, shown in Figures
15 and 16, respectively.

133ISSN 1794-1237 / Volume 11 / Issue 22 / July-December 2014 / pp. 123-136

John Michael espinosa-Durán, peDro p. liévano-Torres, clauDia p. renTería-MeJía, JaiMe velasco-MeDina

Figure 15. Sinusoidal signal

A
m

pl
itu

de

Time (s)

Figure 16. Song played on MP3 player

Time (s)

A
m

pl
itu

de

The first processor configuration consists of

connecting in cascade the noise gate, hard clipping, and

delay effects, whose operation parameters are: thresh-

old 0.1, threshold 0.4, and delay 10 ms, respectively.

The processor’s output signals for this configuration,

using the sinusoidal signal and the song as inputs, are

graphed in Matlab. These are shown in Figures 17 and

18, respectively.

Figure 17. Processor output signal for first configuration,
sinusoidal input

Time (s)

A
m

pl
itu

de

Table 3. Audio effects area resources

Compressor ALUTs % of ALUTs in microsystem Registries % of registries in microsystem

Expander 84 0.28 50 0.49

Noise gate 84 0.28 50 0.49

Soft and hard clipping 65 0.22 48 0.47

Sigmoidal distortion 80 0.27 49 0.48

Sigmoidal piecewise distortion 1225 4.08 891 8.70

Polynomial distortion 231 7.69 131 1.28

Ring modulator 64 0.21 63 0.61

Delay 539 1.79 405 3.95

Chorus 49 0.16 49 0.48

Flanger 44 0.15 44 0.43

Reverb 534 1.78 390 3.81

Phaser 214 0.71 49 0.48

Wah-wah 516 1.72 386 3.77

Wah-wah 24009 79.92 3743 36.55

134

Design of a Programmable microsystem for Digital auDio effects using fPgas

Revista EIA Rev.EIA.Esc.Ing.Antioq / Escuela de Ingeniería de Antioquia

Figure 18. Processor output signal for first configuration,
song input

A
m

pl
itu

de

Time (s)

The second processor configuration connects
in cascade the compressor, soft clipping, ring modula-
tor, and reverb effects, whose operation parameters
are: threshold 0.4 and attenuation 0.6; threshold 0.6;
sinusoidal with frequency of 150 Hz; and attenuation
4 and delay 15 ms, respectively. The processor’s output
signals for the second configuration, using the previ-
ous signals, are graphed in Matlab. These are shown in
Figures 19 and 20, respectively.

Figure 19. Processor output signal for second
configuration, sinusoidal input

A
m

pl
itu

de

Time (s)

Figure 20. Processor output signal for second
configuration, song input

A
m

pl
itu

de

Time (s)

From Figures 17 through 20, we can observe
that the test signals are modified by the audio effects
programmed in the processor; that is, digitalized input
signal Xi is processed by the respective sequence of
effects. However, in order to verify the correct process-
ing of the effects configured in the processor, we must
complete a digital processing of the output signal using
the transformed FFTs or Wavelets, or we must consult
someone with an excellent musical ear.

Considering the literature reviewed, a similar
audio effect processor implementation is presented by
Pfaff et al. (2007). In this study, a processor synthesized
in the EP2C35F FPGA was designed using hardware/
software co-design, and five effects which could be
configured by the user were implemented. However, our
processor has more effects, and they are organized in
an order that allows us to complete correct processing
of the audio signal. In addition, the authors mentioned
do not present synthesis and verification results. It is
therefore not possible to make a real comparison with
our processor.

Table 4. Block area resources in programmable microsystem for digital audio effects

Block ALUTs
% of ALUTs in
microsystem

Registries
% of registries in

microsystem

FX arrangement 27738 92.34 6348 62.00

Mod_par 278 0.92 0 0

Control Unit 2025 6.74 3891 38.00

135ISSN 1794-1237 / Volume 11 / Issue 22 / July-December 2014 / pp. 123-136

John Michael espinosa-Durán, peDro p. liévano-Torres, clauDia p. renTería-MeJía, JaiMe velasco-MeDina

4. CONCLUSIONS

This article presents the implementation of a
microsystem for processing digital audio effects based
on an application-specific reconfigurable processor.
The main advantage of this microsystem in compari-
son to implementations based on DSPs, PCs, or GPUs is
that it allows us to obtain a very high sampling rate to
process high-quality audio in real time. In other words,
the hardware system based on the digital audio effect
processor could be used professionally.

In addition, the user can generate uncommon
audio effects due to the fact that he or she can configure
a chain of effects of the same type. This is due to the
ease and flexibility of modifying the effect parameters
and the processor’s low processing latency.

The processor is configured using a graphical
user interface based on an LCD touch screen. In this
case, the user can select one of the 16 predetermined
audio effect configurations or store 16 new configura-
tions. This interface projects the system as a prototype
that could generate an FPGA-based commercial product.

The microsystem is described in VHDL, synthe-
sized in the EP2C70F896C6 FPGA, and implemented
in the DE2-70 development system with an LCD touch
screen. The synthesis and verification tests on hard-
ware allow us to conclude that the audio effects proces-
sor has a maximum sampling rate of 195.62 MSPS and
that it can be used as an embedded core in an SoC for
audio applications, for a pedal, for example.

ACKNOWLEDGEMENTS

The authors would like to thank Professor Jaime
Andrés Arteaga for his help and assessment on the de-
sign of the graphic interface using an LCD touch panel
and also the student Joaquín Andrés Alarcón for his help
in verifying the chorus and reverb effects.

REFERENCES

Altera. Documentation: SOPC Builder [online] 2011: [4
October 2013] Retrieved from: < http://www.altera.
com/literature/lit-sop.jsp>

Altera. FIR Compiler user guide [online] 2011: [4 October
2013] Retrieved from: <http://www.altera.com/
literature/ug/fircompiler_ug.pdf>

Altera. Quartus II Development Software Handbook v9.0
[online] 2009: [4 October 2013]. Retrieved from:

 <http://www.altera.com/literature/hb/qts/archives/
quartusii_handbook_9.0.pdf>

Berdahl, Edgar and Smith, Julius O. (2006). Some Physical
Audio Effects. International Conference on Digital
Audio Effects. Montreal, Canada. (September 18-20),
pp. 165-168.

Byun, Kyungjin; Kown, Young-Su; Koo, Bon-Tae; Eum, Nak-
Woong; Jeong, Koang-Hui and Koo, Jae-Eul (2009).
Implementation of Digital Audio effect SoC. IEEE
Interntational Conference Multimedia and Expo. New
York, U.S.A. (June 28 – July 2), pp. 1194-1197.

Fernández, Pablo and Casajús Javier (2000). Multiband
Approach to Digital Audio FX. IEEE International
Conference Multimedia and Expo. Nueva York, U.S.A.
(July 30 – August 2), pp. 1747-1750.

Guillemard, Mijail; Ruwwe, Christian and Zölzer, Udo
(2005). J-DAFX - Digital Audio Effects in JAVA. Inter-
national Conference on Digital Audio Effects. Madrid,
España. (September 20-22), pp. 1-6.

Holters, Martin and Zölzer, Udo (2006) Parametric higher-
order Shelving filters. European Signal Processing
Conference. Florence, Italy. (September 4-8).

Karjalainen, Matti; Penttinen, Henry and Välimäki, Vesa
(2000) Acoustic Sound from the Electric Guitar Us-
ing DSP Techniques. IEEE International Conference
on Acoustics, Speech and Signal Processing. Istanbul,
Turkey. (June 5-9), pp. 773-776.

Khosravi, P. On the Design of Spectral Tools in Blue. Csound
Journal [online] 2007, (7): [4 October 2013] Retrieved
from: <http://www.csounds.com/journal/issue7/
onTheDesignOfSpectralToolsInBlue.html>

Liévano, P. P.; Espinosa-Duran, J. M. y Velasco-Medina, J
(2013). “Implementación de Algoritmos para efectos
de audio digital con alta fidelidad usando hardware
programable.” Revista Ingeniería y Universidad, Vol.
17, No. 1 (January), pp. 93-108.

Ling, Fan; Khuen, Fung and Radhakrishnan, Damu (2000)
An Audio Processor Card for Special Sound Effects.
IEEE Midwest Symposium on Circuits and Systems.
Michigan, USA. (August 8-11), pp. 730-733.

Oboril, David; Barik, Miroslav; Schimmel, Jiri; Smekal,
Zdenek and Krkavec, Petr (2000) Modelling Digital
Musical Effects for Signal Processors, Based on Real
Effect Manifestation Analysis. Cost G-6 Conference
on Digital Audio Effects. Verona, Italia. (December
7-9), pp. 1-6.

Pérez, A. Estudio de efectos de audio para guitarra, e implant-
ación mediante DSP Undergraduate thesis, Escuela

136

Design of a Programmable microsystem for Digital auDio effects using fPgas

Revista EIA Rev.EIA.Esc.Ing.Antioq / Escuela de Ingeniería de Antioquia

Técnica Superior de Ingeniería, U. P. Comillas, Madrid,
Spain, 2006.

Pfaff, Markus; Malzner, David; Seifert, Johannes; Traxler,
Johannes; Weber, Horst and Gerhard Wiendl (2007)
Implementing Digital Audio Effects Using Hardware/
Software Co-Design Approach. International Confer-
ence on Digital Audio Effects. Bordeux, Francia. (Sep-
tember 10-15), pp. 1-8.

Schimmel, Jiri; Smekal, Zdenek and Krkavec, Petr (2002)
Optimizing Digital Musical Effect Implementation for
Multiple Processor DSP Systems. International Con-
ference on Digital Audio Effects. Hamburg, Germany.
(September 26-28), pp. 81-84.

Sound laboratory Zoom. Zoom70II guitar operation
manual. [online] 2013: [4 October 2013] Retrieved
from: <http://www.zoom.co.jp/downloads/707ii/
software/>

Tsai, Pei-Yin; Wang, Tien-Ming and Su, Alvin (2010) GPU-
Based Spectral Model Synthesis for Real-Time Sound
Rendering. International Conference on Digital Audio
Effects. Graz, Austria. (September 6-10), pp. 1-5.

Verfaille, Vincent; Zölzer, Udo and Arfib, Daniel (2006)
“Adaptive Digital Audio Effects (A-DAFx): A New
Class of Sound Transformations.” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 14, no.
5, (September), pp. 1817-1831.

Zölzer,U. DAFX - Digital Audio Effects. Chichester, England:
J. Wiley & Sons, 2002.

 TO REFERENCE THIS ARTICLE /
PARA CITAR ESTE ARTÍCULO /

PARA CITAR ESTE ARTIGO /

Espinosa-Duran,J.M.; Liévano-Torres, P.P.; Rentería-Mejía,
C.P.; Velasco-Medina, J. (2014). Design of a Programmable
Microsystem for Digital Audio Effects Using FPGAs. Revista
EIA, 11(22) July-December, pp. 123-136. [Online]. Available on:
http:/dx.doi.org/10.14508/reia.2014.11.22.133-146

