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Abstract

Pain is a health problem that affects people physically and emotionally. To determine the 
pain experimented, a survey is carried out, which implies self-evaluation, honesty, and 
verbal or facial communication capability. In this paper, we present a comparison of two 
computational algorithms for two classifiers: the first classifier discriminates between 
pain and no pain, and the second one classifies three levels of pain. The algorithms 
employed were the support vector machine (SVM) and a quadratic discriminant analysis 
method (QDA). Acute pain was induced in fifteen participants by electrostimulation, 
during the experiment we assessed electromyography (EMG), electrocardiography (ECG), 
electrodermal activity (EDA), and electroencephalography (EEG), as well we asked the 
participants to report their pain perception using the visual analog scale. Subsequently, we 
extracted features related to pain assessment from the acquired signals. Three analyses 
were performed, binary classifications with multiple features, binary classifications with 
one feature, and three-level classifications with various features. We compared the SVM and 
the QDA algorithms using the confusion matrix, and the computational cost. For the binary 
classification, the SVM algorithm accuracy was 88.02% and the QDA algorithm accuracy was 
70.78%, with a computational cost of 9.587 s and 3.023 s, respectively.
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Inteligencia computacional para 
la medición de presencia de 
dolor mediante el uso de señales 
electrofisiológicas 

Resumen

El dolor es un problema de salud que afecta a las personas física y emocionalmente. 
Para determinar el nivel de dolor experimentado, se realiza una encuesta que implica 
autoevaluación por parte del paciente y capacidades de comunicación verbal o facial. En este 
artículo, se presenta la comparación de los resultados de dos algoritmos computacionales 
para dos tipos de clasificación: el primero discrimina entre dolor y no dolor, el segundo 
clasifica tres niveles de dolor. Los algoritmos empleados fueron Máquina de Soporte 
Vectorial (SVM) y el método de Análisis de Discriminante Cuadrático (QDA). Se indujo 
dolor agudo a 15 participantes por electroestimulación, se evaluó electromiografía (EMG), 
electrocardiografía (ECG), actividad electrodérmica (EDA), y electroencefalografía (EEG), y 
se le pidió a los participantes reportar el dolor percibido mediante la escala análoga visual. 
Posteriormente se adquirieron características de las señales asociadas al dolor. Se realizaron 
tres análisis: clasificación binaria con múltiples variables, binaria con una característica y 
clasificación de tres niveles con varias características. Se compararon los algoritmos SVM y 
QDA utilizando la matriz de confusión y el costo computacional. Para la clasificación binaria 
la exactitud del SVM fue del 88,02% y del QDA del 70,78%, con un costo computacional de 
9,587s y 3,023s respectivamente. 

Palabras clave: Señales electrofisiológicas; Medición de dolor; Extracción de características; 

Máquina de soporte vectorial; Análisis de Discriminante Cuadrático.

1. Introduction

Pain is defined as a subjective and unpleasant sensation in which 
perception is affected by factors such as gender, race, beliefs, and 
experiences, amongst others. All the population suffers from this 
unpleasant sensation. For example, it is present in 52.9% of the 
65-year-old population in the United States (Siqueira et al., 2020). 
Also, a study showed a prevalence of chronic pain in children from 10 
to 14 years old of 46% of this population (Stahlschmidt et al., 2018). 
Pain can become a health problem when it seriously affects the 
individual, as it affects their physical functionality, emotional health, 
interpersonal relationships, and quality of life DIA (2011). It also 
represents a social problem related to the cost associated with 
medical consultations and work absenteeism. Each year 15-20 
percent of the total population experience acute pain, while chronic 
pain is twice as common (Medrano Garcıa et al., 2010). Pain diagnosis 
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is relevant to evaluate possible illnesses, injuries, or specific health 
situations. It also helps to select a therapy, define the use of 
medications, evaluate a treatment progression, or control and reduce 
the pain considerably. Vanderbilt University physicians demonstrated 
the continued realization of verbal pain perception in mature people, 
which allows for the proper administration of pain management 
medications, which significantly improves the health condition 
(Monroe et al., 2015). Pain is usually treated with pharmacological 
products (Nisbet and Sehgal, 2019). Nevertheless, the incorrect 
administration of medicines can lead to other problems, such as 
addiction to painkillers, depression, or impairment of the individual’s 
social behavior (Lusher et al., 2006; Monroe et al., 2015; Jollant et al., 
2019). In the United States addiction to painkillers is increasing 
(Codeine, Darvocet, or Morphine), and prescription of opioids 
became the second most prevalent type of abused drug (4.5 million 
abusers; 1.37% of the population) (Van et al, 2015). Painkillers abuse 
is an important health problem, mainly because it could be the 
beginning of new drug addiction or can even cause death. By 2002, 
death certificates listed opioid analgesic poisoning as a cause of death 
more commonly than heroin or cocaine (Nora, 2014). Conventional 
techniques to estimate pain are based on the patient’s self-report. 
Some of them are the visual analog scale (VAS) (Breau, 2010), the 
numerical classification scales (NRS); and the verbal classification 
scale (Petrovic et al., 2000; Briggs and Closs, 1999). Other methods 
related to pain assessment are based on surveys that evaluate other 
aspects such as feelings and relationships, as well as the evaluation 
behaviors related to the presence of pain, such as anger and 
anxiousness. Nevertheless, some people are not able to express their 
pain perception, such as those with cognitive or language disabilities 
or babies (Jollant et al., 2019). Other methods are based on 
computational analysis, where some characteristics related to facial 
and corporal patterns can be evaluated (Egede et al., 2020; Hassan et 
al., 2021). For example, the Facial Action Coding System helps to 
evaluate micro-facial expressions related to feelings like anger, fear, 
happiness, or sadness. There are micro-expressions related to pain 
such as lower eyebrows or forehead, raising cheekbones and 
tightening eyelids, wrinkling the nose, raising the upper lip and 
closing the eyes, winking, raising the edge of the lips, and chin lift, 
among others. The combination of micro-expressions enables the 
assessment of pain and its intensity of it. For newborns or children, it 
is employed the Child Facial Coding System (Rojo et al., 2015). To 
characterize the micro-expressions, some techniques are employed 
such as the principal components analysis (PCA), Gabor filters (Roy et 
al., 2016), Thin Plate Spline (Rathee and Ganotra, 2015), the Hankel 
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matrix (Lo Presti and La Cascia, 2017), those techniques enable 
feature extraction that subsequently is evaluated by classifiers such 
as neural networks (Rodriguez et al., 2022), convolutional neural 
networks (CNN) (Pikulkaew and Chouvatut, 2021), Support Vector 
Machine (SVM) (Rathee and Ganotra, 2015; Roy et al., 2016), Extreme 
Learning Machines (ELM) (Rupenga and Vadapalli, 2016) to define 
pain level. Several methods of pain characterization are focused on 
using the use of electrophysiological signals. For example, in 
Hadjileontiadis (2018) authors record electroencephalography 
signals (EEG) data during a cold pressor test experiment and analyze 
them using the wavelet higher-order spectral (WHOS) features to 
distinguish between pain or non-pain. They found that WHOS 
features help to differentiate relaxation from pain with an accuracy of 
75%. In Hadjileontiadis (2015) authors also use the EEG signal by 
employing the wavelet higher-order spectral to extract features from 
EEG and using the quadratic discriminant analysis to classify pain. 
The authors obtained an accuracy of 71.31% employing the alpha 
waves. In Subramaniam and Dass (2021) authors use the features 
related to the electrodermal activity (EDA) and ECG using CNN long/
short term memory (LSTM), they evaluated the classification between 
pain and no-pain, distinguished between males and females obtaining 
an accuracy of 95.79%, and 70.59% respectively. In Nir et al. (2010) 
authors investigate how the peak alpha frequency (PAF) is associated 
with the perception of pain. They used an RM-ANOVA analysis and 
found a statistically significant change in PAFs between conditions 
(resting-state, innocuous, and noxious) at the temporal electrodes 
ipsilateral (P=0.028) and contralateral (P=0.015) to the applied 
stimulation. A different approach is the analysis of pain based on the 
use of electromyography, for example, in Hung et al. (2014) the 
authors classify low back pain during lifting loadings, using features 
such as the root means square of the signal (RMS) and the means 
power spectrum density, they obtained and accuracy of 89%. On 
Hung et al. (2014), the authors use electromyography signals (EMG) 
with principal component analysis neural network (PCA) to classify 
LBP based on lifting capacity. The method has more than 80% of 
accuracy in distinguishing between healthy and back pain subjects. 
Finally, in Susam et al. (2018) authors use machine learning and 
electrodermal activity data, using timescale decomposition as the 
feature extraction method, and linear support vector machine as the 
classifier algorithm to assess pain. The authors obtained an average 
accuracy of 65.94%. Other works employ different signals and 
information, for example, Wang et al. (2020) used skin conductance, 
ECG, and EMG for pain recognition using Hybrid RNN-ANN Based 
Deep Physiological Network, where they obtained with deep 
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recurrent neural network accuracy of 82.7% and with Hybrid RNN 
– ANN an accuracy of 83.3%. This in comparison with the previous 
studies demonstrates an increase in the accuracy of binary pain 
recognition. In Erdogan and Ogul (2020), the authors assess pain 
based on eight vital signs: the Glasgow Coma Scale (GCS-eye 
opening), heart rate, oxygen saturation, pupil size (left and right), 
respiration rate, skin temperature, and urine color. They use four 
different machine learning algorithms, obtaining the best result with 
the Random Forest algorithm, with an accuracy of 76.1%. Despite the 
use of more features than other studies, the accuracy is similar to or 
lower than that obtained with one electrophysiological signal. In 
Thiam et al. (2021) the authors pre-process the signals (ECG, EDA, 
and EMG) with a multi-modal deep denoising convolutional auto-
encoder to improve the obtained data. Afterward, they use the self-
supervised learning algorithm to classify between pain and no pain. 
As result, they reach an average accuracy of 77.58%. This method 
implies a higher computational cost. On Bellmann and Schwenker 
(2020) authors combine ECG, EMG, and EDA features, training the 
algorithms with a personalized classification model using SVM and 
decision tree as classifiers, obtaining an average accuracy of 80.54%. 
Authors on Pouromran et al. (2021) compared the difference 
between the use of features from one or different electrophysiological 
signals. Using features extracted from EDA, ECG, and EMG signals 
with Extreme Gradient Boosting Regression and Random Forest, they 
concluded that EDA is the best signal for pain intensity estimation 
with an accuracy of 83.30%, the same accuracy that they reached 
using the three signals. Other authors combine electrophysiological 
sensors with another kind of data, such as in Yang et al. (2019), 
where authors used ECG and EDA with wearable sensors that 
recorded linear acceleration and angular velocity from the wrist-
worn based on regression models. The result from the combination of 
features associated with the three information sources was an 
average accuracy of 75.80%. In Susam et al. (2022) authors combine 
electrodermal activity with video information. From the evaluation of 
features from the EDA signal and facial action unit from the video 
taken during post-surgery in children, the authors use Support Vector 
Machine and kernel density estimation to estimate pain, obtaining an 
accuracy of 90.91%, which implies an improvement in pain 
classification at a high computational cost. In this paper, we use two 
different methods of computational intelligence (Support Vector 
Machine (SVM) and Quadratic Discriminant Analysis (QDA)) to 
evaluate two cases: the first is the classification between pain and no 
pain, and the second one is the classification among three level of 
pain. The algorithms are based on the analysis of characteristics 
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related to EEG, ECG, EDA, and EMG, and their comparison to the self-
reported pain using the visual analog scale (VAS) during an 
experiment where we induced acute pain. We compared the results, 
performance, and computational cost for both methods, and we 
expose a brief comparison with the results reached by other authors.

2. Methodology

This section presents the methodology to classify pain, and no 
pain, based on the analysis of electrophysiological signals. The 
development of the classification algorithms begins with an 
experiment to induce acute pain, where the EEG, ECG, EDA, and EMG 
electrophysiological signals were acquired. The process was divided 
into three main aspects (see figure 1): the signals’ pre-processing, 
the feature extraction associated with pain, and the development of 
the classification algorithms, which are detailed here. Finally, this 
section presents the validation process to evaluate two classification 
algorithms.

Figure 1. Block diagram of the proposed algorithm for pain and no-pain classification

2.1. Experiment and data acquisition

The experiment was based on an acute pain induction test using 
electrostimulation. The device to do this was a Cadwell® brand 
electrodiagnostic equipment reference Sierra Summit with two 
channels. The population for the experiment was composed of seven 
women, and eight men, with ages between 17 and 45. Participants 
signed an informed consent once the procedure has been explained. 
The exclusion criteria to participate in the experiment included the 
presence of chronic diseases that involve sensory injuries such as 
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diabetes, polyneuropathy, traumatic injuries, cognitive impairment, 
and the use of pacemakers. An external electric stimulus was induced 
for the study on the motor median nerve in the participant’s non-
dominant hand. The active electrode is located between the tendons 
of the flexor carpi radialis and flexor carpi ulnaris, using a ground 
pole located on the back of the hand. The other active electrode 
is located on the point of the abductor pollicis brevis and the first 
metacarpal joint. During the experiment, the current increased 
every 30 seconds from 10 mA to a maximum of 100 mA. During 
the last minute, the electrical impulse was given every 2 seconds. 
The maximum time of the experiment was 4 minutes or until the 
participant required the finalization of the test.

The EDA, ECG, EMG, and EEG electrophysiological signals were 
collected through all the experiments using the Bitalino Board 
(BITalino (r)evolution Board Kit BT), with a sampling frequency 
of fsE = 1 KHz. The ECG signal active electrodes were placed on 
the clavicles and the reference in the iliac crest. The electrodermal 
activity (EDA) was registered between the index-middle finger 
and the index-third finger. The EMGs was assessed by locating 
the active electrodes bilaterally in the belly of the Orbicularis 
Oris muscle, and the reference on the nasal bridge. Finally, the 
electrodes for the EEG signal were placed on the 10-20 system in 
Fpz and Oz 1-2 (see figure 2). Additionally, the pain perceived by 
each participant was evaluated verbally every 20 seconds by using 
the visual analog scale (VAS). 

2.2. Pre-processing

The Bitalino board has analog and digital processing according to 
the acquired signal. Later, a digital filter was used for each signal. For 
the ECG signal, a Butterworth band pass filter was used with cutoff 
frequencies (fc) between 0.1 Hz and 250 Hz, with an order of fifty. In 
the case of the EMG, a Butterworth high pass filter was used, with a 
cutoff frequency of fc = 20Hz of twenty-five order. For the EEG signal, 
a Butterworth band pass filter was used with cutoff frequencies of 
fc1 = 2Hz, and fc2 = 8Hz of order fifty. Finally, for the EDA signal, we 
employed a Butterworth high pass filter with a cutoff frequency of fc 
= 0.4Hz twenty-fifth order.
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Figure 2. Electrodes location.

2.3. Feature Extraction

Some characteristics of the electrophysiological signals are related 
to pain as was studied in the introduction. Usually, works evaluate 
different characteristics associated with one electrophysiological 
signal. In this work, we evaluate the more relevant characteristics 
according to the literature for the EEG, ECG, EDA, and EMG signals. To 
do this, we used a window of 20000 samples to evaluate the features 
related to each signal, and each final feature was selected as the mean 
found every 20 seconds, that is the time when the VAS was assessed.

2.3.1. Feature extraction for the ECG signal

For ECG we used the heart rate (HR) characteristic. According 
to Padmanabhan and Sindhu.G (2014), Hautala et al. (2016) HR 
increases after a new stimulus that causes pain. To calculate the HR it 
is necessary to find the R peaks of the QRS complex. For this purpose, 
the double-level method was used to detect the R-peak. The HR is 
calculated on (1) based on the difference in seconds of two R-peaks, 
tpi−1 and tpi. To locate the R-peak it is used a threshold value L, which 
is calculated in (2), where a is a fixed value typically used as 0.6, 
when a value exceeds the threshold L the time is saved in t1, and t2 is 
calculated as the time where the next value cross down the threshold, 
therefore and the R-peak is located in (3).
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 2.3.2. Feature extraction for the EEG signal

For the EEG signal, the feature selected is the peak alpha frequency 
(PAF) assessed by exploring the source-level power spectra using a 
Fast Fourier Transform (FFT). According to Kostyunina and Kulikov 
(1996), Christie et al. (2017), and Nir et al. (2010), the PAF reflects 
the emotional and autonomic states. When the PAF increases, it 
reflects joy and anger, otherwise, when PAF decreases, it is related 
to fear and sorrow, the authors in Nir et al. (2010) found that a small 
decrease exists in the magnitude of PAF when pain is experienced. 
The PAF is calculated as the higher activation magnitude for the FFT.

2.3.3. Feature extraction for the EMG signal

The electromyographic activity (EA) and root mean square (RMS) 
was used in Hung et al. (2014) to evaluate the muscle force. In 
previous studies, it was demonstrated that subjects with pain 
produced significantly lower force values than those without pain. 
The EA is calculated on (4), where sEMG is the data of the EMG 
signal after the pre-processing, and T is a constant period, which is 
established as the time to take one sample of the VAS (20 sec). Finally, 
the root mean square (RMS) follows (5).
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2.3.4. Feature extraction for the EDA signal

Related to the EDA signal, the standard deviation (SD) as TSD metric 
(timescale decomposition) was selected as a statistical feature 
extraction methodology based on the results obtained by the authors 
in Susam et al. (2018). The TSD on SD allows us to collect statistical 
information and changes over the signal. The purpose of the 
statistical analysis is to eliminate variability caused for issues such 
as response delays. Therefore, this is calculated on (6), where μ is the 
mean of the signal and α is the SD, and N is the length of the signal 
that is analyzed.

2.4. Pain classification algorithms.

We selected as classifiers the Gaussian Support Vector Machine and 
the Quadratic Discriminant Analysis, to classify between pain and no 
pain, based on the literature review. According to the VAS, reported 
by the participants, two tests were performed. The first test classified 
the data between pain and no pain with all the features and the 
second one used only the PAF, according to the VAS reported, the 
system classifies no pain from 0 to 3, and pain for the other values. 
The third test consisted in classifying data into 3 levels of pain: 0 - 3 
for low pain, 4 - 7 for medium pain, and 8 - 10 for high pain. Data 
were divided into two different sets: the first set of data, composed 
of 70% of the total dataset was used to train the algorithms applying 
k-fold cross-validation to avoid overfitting. The second set, composed 
of 30% of the total data, was used to validate both algorithms.

2.4.1. Support vector machine

The support vector machine is a supervised machine-learning 
algorithm. The main idea of the SVM is to find the optimal 
hyperplane, which separates data into two classes. For our purpose, 
the hyperplane separates data between pain and no pain. The inputs 
for the algorithm are the electrophysiological features and the 
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corresponding VAS binary value. Data are fixed on an optimal hyper-
plane, which differentiates each category (class 1 has an output Y 
(i) = 1 for pain, and class 2 has an output Y (i) = 0 for no pain). The 
hyper-plane is defined according to the cost function 1 (see (7)), and 
the cost function 2 (see (8)).

The SVM finds the optimal hyper-plane by minimizing Θ ϵ 
Rm+1, which represents the vector parameter of the hyper-plane, 
where m is the size of the training set, and f εRm+1 is a new feature 
vector given by a Gaussian Kernel. It is calculated the similarity of a 
landmark li and the original features Xi, where i is the dimension of 
the data or the number of characteristics, and σ refers to the spread 
of the normal distribution.

 2.4.2. Quadratic discriminant analysis

The quadratic discriminant analysis is the general form of the 
Fisher Linear Discriminant, it is a statistical method used in pattern 
recognition and machine learning to find a quadratic combination of 
features that separates two or more labels. This method is based on 
Bayes Law given by equation 12. 
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 In (12) the probability of the output y with each class k is 
estimated. In this case, we have two classes (pain, and no pain). 
Additionally, x is defined as the vector of the signals’ features, and 
PIk refers to the base probability of each class k, trained with the 
training data. For the QDA algorithm, it is assumed that each input 
is conditionally independent. The equation that represents the QDA 
algorithm is given by (13), where the Cst constant refers to the 
probability that the input takes some value. 

2.5. Algorithms training

To train the algorithms, the k- fold cross-validation algorithm was 
used. This is used in machine learning models to protect against 
over-fitting in predictions. The method divides the data into fixed 
numbers of partitions or folds to run the training process Wong and 
Yeh (2020). This method follows the below algorithm:

(1) Choose a K number of folds (in our case, we selected K = 2). 

(2) Divide the data randomly into K subsets with equal size.

(3) Train the model with K − 1 folds and test it with the Kth fold.

(4) Repeat the process with each fold until using all the folds for 
training and testing.

(5) Calculate accuracy per iteration, and the average of all accuracies 
is the performance metric.

2.6. Validation

To evaluate the algorithms’ performance, we used the confusion 
matrix, which allows the analysis of aspects such as accuracy, 
precision, sensitivity, and specificity. The confusion matrix (see 
table 1) is based on the evaluation of the following values: TP (true 
positive) represents the amount of correct prediction of class 1; TN 
(true negative) represents the amount of correct prediction of the 
class 0, FP (false positive) represents the wrong prediction of class 1, 
and FN (false negative) represents the wrong prediction of class 0.
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Table 1: Confusion Matrix

Predicted:
No (0)

Predicted:
Yes (1)

Real: Yes (1) FN TP
Real: No (0) TN FP

Finally, we evaluated the computational cost, which is measured 
as the convergence time required to complete the training process.

3. Results

In this section, we present the principal results obtained, using the 
SVM and QDA algorithms, for two tests: i) a binary classification 
between pain and no pain, and ii) a classification between no 
pain, moderate pain, and severe pain. As well, we compare the 
performance of the algorithms using several features related to 
different electrophysiological signals and the results by employing 
one characteristic, which is what works presented in the literature 
review do. Here, we show some graphical examples of the results 
obtained and the final parameters to evaluate the algorithms’ 
performance. Figure 3 shows the values of the different features used, 
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contrasted to the VAS binary value for one of the participants. As 
can be seen, PAF, RMS, and EMG Activity or EA are the features that 
present more changes after 100 seconds, the time when the users 
start to report pain. Features as the HR presents an increment at 
100 seconds, but after a while, the HR returns to a typical value. The 
SD shows a small increment in comparison to the other features. It 
is important to correctly select the signals’ features to classify them 
properly. The data was divided into two sets: 70% of the data was 
used to train the algorithms, and the 30% remainder was used to test 
the algorithms.

Figure 3. Parallel between the features and the respective value of VAS for one 

subject, each feature is used for training and testing the classification models.

For the binary classification, the accuracy for the training set 
was ACC = 85.66% for the QDA, and ACC = 96.634% for the SVM 
algorithm with a Gaussian kernel, by employing all the features 
assessed. Figure 4 shows the classification using the SVM and 
the QDA algorithms compared to the VAS binary output for data 
employed from the test set, in the case of one of the participants. 
Table 2 shows the results obtained for the test set, including 
precision, accuracy, sensibility, specificity, and computational cost 
to compare the SVM and the QDA algorithms.
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Table 2. Algorithm’s results using all the features

Metrics SVM QDA
Accuracy (%) 88.02 70.28
Precision (%) 90.4 62.5

Sensitivity (%) 95 78.75
Specificity (%) 85.71 57.14

Computational cost (s) 9.587 3.023

Figure 4. Classification obtained with QDA and SVM contrasted with the binary VAS.

For the binary classification, a second test was performed using 
the same algorithms but evaluating only one of the features (for this 
case, we selected the peak alpha frequency (PAF). Table 3 shows 
the results of the classification for the test set. As can be seen, the 
algorithms’ performance is lower than using more features related 
to different electrophysiological signals. For the third test, with 
three levels of pain and employing all the features evaluated, the 
QDA obtained an accuracy ACC = 68.6% for the training set, and the 
SVM with a Gaussian kernel an ACC = 95.2%. Figure 5. shows the 
classification using the SVM and the QDA algorithms compared to 
the VAS reported as no pain, moderate and severe pain from the test 
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set, in the case of one of the participants. Table 5 shows the results 
obtained for the test set, including precision, accuracy, sensibility, 
specificity, and computational cost to compare the SVM and the QDA 
algorithms. 

Table 3. Algorithm’s results using PAF

Metrics SVM QDA
Accuracy (%) 60.95 60.00
Precision (%) 59.09 57.89

Sensitivity (%) 85.00 86.67
Specificity (%) 28.89 24.44

Computational cost (s) 1.293 0.808

Figure 5. Classification obtained with QDA and SVM contrasted with the multi-class VAS.
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4. Discussion

The use of all the features shows better results for both algorithms 
employed, even if it implies a higher computational cost. Additionally, 
the SVM algorithm surpasses the QDA algorithm reflected in greater 
accuracy, precision, sensitivity, and specificity. Accuracy is related to 
the number of cases correctly predicted for both classes in contrast 
to all the predicted data. Precision refers to the right prediction of 
pain contrasted to the total prediction of this class between the well 
and wrong classification of pain. Specificity indicates the correct 
classification of no-pain, related to the adequate and incorrect 
classification for this class. Sensitivity symbolizes the relationship 
between the number of cases where the pain was classified 
properly, against the sum of the number of cases where the pain was 
properly classified and the cases where the pain was misclassified. 
The principal problem of the QDA algorithm is that it predicts no 
pain where there is pain, this can be seen in the small value of the 
specificity, which means that it can correctly predict class 0 in around 
half of the new data. On the other hand, the specificity, related to the 
SVM algorithm, shows a correct classification in the case of no pain. 
The sensitivity obtained shows that both models correctly classify 
pain, but SVM has better performance at a rate of almost 16% better 
than QDA by evaluating the new data. According to the particular case 
presented in figure 4, the QDA has an accuracy of 58.34%, and the 
SVM of 83.33%. As was said above, the SVM is a better classifier than 
the QDA, it has better accuracy values in training and test sets. The 
last is because the SVM optimally separates the hyper-plane solving 
an optimization problem while the QDA has an analytical solution 
that depends on the covariance matrix of all the data to maximize 
the separability of the classes, at the moment to present new data for 
QDA that was not part of the training process it has more problems 
to classify. Nevertheless, according to the accuracy, it is worth 
mentioning that both algorithms are good classifiers due to they 
reach an accuracy higher than 70% with the new data.

Table 4. Multiple classification results

Metrics SVM QDA
Accuracy (%) 78.90 63.16
Precision (%) 100 50.00

Sensitivity (%) 50.00 28.57
Specificity (%) 100 83.33

Computational cost (s) 6.29 1.24
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When one feature is employed, as was expected the absences of 
other features affect the performance of the classifiers. It is worth 
saying that these classifiers present a similar or even better value 
of sensitivity, which means that both have a desirable prediction 
of class 1, contrary to specificity, which means that classifiers 
cannot predict more than the 70% of class 0. The last parameters 
are related to the accuracy and precision obtained for both 
algorithms, which are considerably lower than the results presented 
when we employed more features assessed from the different 
electrophysiological signals.

Table 5: Comparison with other works. 

Reference Signals acquired Algorithms Accuracy (%)
Subramaniam 

and Dass (2021)
EDA, ECG

Multilayer 
perceptron

70.59

Wang et al. 
(2021)

Skin conductance 
ECG, EMG

Hybrid RNN-ANN 82.70

Thiam et al. 
(2021)

ECG, EDA, EMG Self-supervised 77.58

Yang et al. (2019)
ECG, EDA, wrist-

worn mov.
Decision Tree 80.54

Susan et al. 
(2022)

EDA, EMG and 
face video

SVM 90.91

Our approach 
(single feature)

EEG SVM, QDA 60.95

Our approach 
(binary class)

ECG, EDA, EMG, 
EEG

SVM, QDA 88.02

Our approach 
(multiple class)

ECG, EDA, EMG, 
EEG

SVM, QDA 78.90

On the other hand, when we perform the third test, using 
multiple classes for classification. Initially, the accuracy obtained 
from the models on the training set is slightly different in the SVM 
with a decrease of 1.43%, however, for the QDA the reduction of the 
performance is highly different, with a 17.2% difference between 
the experiments. Nevertheless, when the comparison is done with 
the test set, the difference between the models improves compared 
to the training set, where we obtained a difference of 9.12% for 
SVM and 7.68% for QDA.  Therefore, the results obtained in this 
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experiment allow establishing a different way to classify pain, 
having three several classes sacrificing the accuracy of less than 
10%. The main difference between the experiments lies in the 
sensitivity, having a 50% for SVM and 28.57% for QDA, this means 
that the models have trouble identifying the true class, taking into 
consideration that having an additional class increases the difficulty 
for the classification. However, this low value in the sensitivity 
is compensated by having high precision and specificity for the 
SVM and high specificity for the QDA. According to the accuracy, 
the SVM continues reaching an accuracy higher than 70% with 
the test data. The computational cost, when we classify between 
pain and no pain, is around three times bigger for the SVM than 
the QDA algorithm, and twice when just one characteristic is used. 
When we classify three different levels of pain employing all the 
features, the computational cost remains higher for the SVM, but 
lower than in the first experiment. The reason is that the processes 
were run using a computer with a solid-state drive. Comparing the 
results obtained from previous works, we can find that the SVM and 
QDA algorithms on the first experiment have better results in the 
classification when they are trained with features from different 
electrophysiological signals than the results reached when only 
one signal was used. In Susam et al. (2018) authors use the SVM 
classifier employing the EDA signal’s features, reaching an accuracy 
of 71.61% in one of the analyses presented and 77.66% in the 
second analysis. In Hadjileontiadis (2015), the authors used QDA 
and SVM employing the data from EEG, and they obtained different 
classification performances evaluated with the classification 
accuracy (CA). According to the analyses realized, where the CA 
found was between 80% and 90%. Authors in Hung et al. (2014) 
use surface electromyography to classify low back pain, obtaining 
a sensitivity of 90%, a specificity of 88%, and an accuracy of 89%. 
Similarly, the results obtained are in most cases better, compared 
to those presented in the literature review. The idea to use different 
electrophysiological signals is to improve the classification process, 
taking into account that some parameters can change for reasons 
distinct from pain. For example, HR can be affected by aspects such 
as the use of medicines. In this paper, a second experiment was 
performed using only one feature to train the classifiers. The results, 
as expected, are better when using more characteristics from the 
different signals. Therefore, this work shows that the use of attributes 
related to the different signals improves the classification rates, 
comparing the results obtained against previous works where one 
electrophysiological signal was employed. For the classification 
between three levels of pain, the results for the SVM are similar 
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comparing the above articles. It is important to mention that having 
an extra class, gives more information for real applications such as 
pain management. In Table 5 we present our results and the most 
recent works that use more than one electrophysiological signal to 
classify pain. The first conclusion is that all the works reach better 
results using several electrophysiological signals than the one that 
we present in which we used just the features of the EEG signal to 
classify pain. It is important to have in mind that the features of 
one electrophysiological signal can be affected by other aspects 
different than pain, such as the use of medications. On the other 
hand, when we compare the results reached by the authors with 
our binary classification approach, it can be seen that we got better 
results than those presented on Subramaniam and Dass (2021). On 
the other hand, authors in Wang et al. (2020) use Deep Recurrent 
Neural Network, obtaining an accuracy of 82.7% for multilevel 
pain assessment. They got a better result with a difference of 3.8%. 
Nevertheless, the computational cost of this kind of algorithm is 
higher than the algorithms that we employed. Further, in multiple-
level classification, we reach better results than those presented on 
Thiam et al. (2021). Finally, in Susam et al. (2022) authors evaluate 
the accuracy in the assessment of pain using EDA features reaching 
an accuracy of 68.18%. When they used the features associated 
with the video records they reached an accuracy of 77.27%. Then 
they combined features of both sources of information reaching 
an accuracy of 90.91%. Even if the results are better than the ones 
obtained here, the data processing implies a higher computational 
cost. It is important to highlight that for real-time applications, 
the computational cost is a valuable parameter that can affect 
the performance of a system whose dynamics are based on the 
assessment of pain, such as applications of pain relief with virtual 
reality scenarios. 

5. Conclusion

The present study aims to explore the relationship between the 
EMG, ECG, EEG, and EDA signals’ features, and pain. The idea was to 
explore if pain assessment can be improved when using features from 
different electrophysiological signals in comparison to the use of 
characteristics related to just one electrophysiological signal, which is 
usually what previous works did. Moreover, we evaluate and compare 
the different results obtained using binary pain classification and 
three labels of classification (low pain, medium pain, and high pain). 
Two different classifiers were used, the Support Vector Machine 



Edinson Felipe Porras Hilarión, Lina María Peñuela Calderón

21Universidad EIA / Rev.EIA.Univ.EIA

and Quadratic Discriminant Analysis in an experiment where 
acute pain was induced in healthy participants. To validate the 
performance of each algorithm the classification of the new data 
was compared to the VAS reported by the participants to determine 
the confusion matrix. As a result, we found that the classification 
by using the SVM algorithm has a better performance than the QDA 
algorithm obtaining an accuracy of 88.02% and 70.78% in the test 
data, respectively when using all the electrophysiological signals, 
also these results are better than those reached by using the PAF 
characteristic with the same classification algorithms. Furthermore, 
the results for multiple class classification the SVM has the same 
behavior as the binary classification, with better performance than 
QDA with an accuracy of 78.90% for SVM and 63.16% for QDA. Even 
though the accuracy for SVM multiple classification y is 10% lower 
than SVM with binary classification, with multiple classifications 
we have more detailed information on the pain that can be useful 
for medical applications. The results are better compared to the 
performance of previous studies in which similar classifiers were 
used using characteristics of just one electrophysiological signal. 
Future work of this study includes the analysis of chronic pain.
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