El Método de Newton para raíces complejas. Fractales en el problema de Cayley
El Método de Newton para raíces complejas. Fractales en el problema de Cayley.
Barra lateral del artículo
Términos de la licencia (VER)
Declaración del copyright
Los autores ceden en exclusiva a la Universidad EIA, con facultad de cesión a terceros, todos los derechos de explotación que deriven de los trabajos que sean aceptados para su publicación en la Revista EIA, así como en cualquier producto derivados de la misma y, en particular, los de reproducción, distribución, comunicación pública (incluida la puesta a disposición interactiva) y transformación (incluidas la adaptación, la modificación y, en su caso, la traducción), para todas las modalidades de explotación (a título enunciativo y no limitativo: en formato papel, electrónico, on-line, soporte informático o audiovisual, así como en cualquier otro formato, incluso con finalidad promocional o publicitaria y/o para la realización de productos derivados), para un ámbito territorial mundial y para toda la duración legal de los derechos prevista en el vigente texto difundido de la Ley de Propiedad Intelectual. Esta cesión la realizarán los autores sin derecho a ningún tipo de remuneración o indemnización.
La autorización conferida a la Revista EIA estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo en el Sistema Open Journal Systems de la Revista EIA, así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
Todos los contenidos de la Revista EIA, están publicados bajo la Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Licencia
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Contenido principal del artículo
Resumen
Cuando la búsqueda de la solución de un problema de aplicación implica la resolución de ecuaciones no lineales se hace uso de métodos numéricos. Siendo el método de Newton uno de los más usados debido a su versatilidad y agilidad, es de gran interés emplearlo especialmente para aproximar soluciones de sistemas de ecuaciones no lineales. Solucionar ecuaciones con variable compleja a través del método de Newton tiene una aplicación muy interesante en el campo de los fractales como es la del problema de Cayley y las figuras fractales que se producen a partir de la convergencia, divergencia e incluso la eficiencia del método. En este artículo se muestra el estudio del problema de Cayley a través de la generalización del método de Newton a R2. Además, se presentan algunos fractales producidos por iteraciones del método de Newton en los complejos.
Descargas
Detalles del artículo
Referencias (VER)
Burden, R. y Faires, D. Análisis Numérico, séptima edición, México, lnternational Thomson Editores, (2002), pp. 66-74.
Gutiérrez, J.; Olmos, M. y Casillas, J. Análisis Numérico, México, Interamericana Editores, (2010), pp. 30-37.
Mora, W. (2010). Introducción a los métodos numéricos [e-book]. Costa Rica, Escuela de Matemática - Instituto Tecnológico de Costa Rica: Disponible en https://tecdigital.tec.ac.cr/revistamatematica/Libros/WMora_MetodosNumericos/WMora-ITCR-MetodosNumericos.pdf [Consultado 30 de enero de 2017]
Pita, C. Cálculo Vectorial, México, Escuela de Ingeniería - Universidad Panamericana, (1995), pp. 319-331.
Plazas-Salinas, S. y Gutiérrez-Jiménez, J. (2013). Dinámica del Método de Newton [e-book], España: Universidad de la Rioja, servicio de publicaciones. Disponible en: Dialnet https://dialnet.unirioja.es/servlet/libro?codigo=529750 [Consultado 25 de noviembre de 2016].
Rubiano, G. (2007). Método de Newton, Mathematica y Fractales: Historia de una Página. Boletín de matemáticas, 14(1), pp. 44-63, [Online] Disponible en http://www.bdigital.unal.edu.co/38088/1/40459-181969-1-PB.pdf. [Consultado 25 de enero de 2017]
Sauer, T. Análisis Numérico, Segunda edición, México, Pearson Educación, (2013), pp. 51-58.
Sutherland S. (2014). An Introduction to Julia and Fatou Sets. In: Bandt C., Barnsley M., Devaney R., Falconer K., Kannan V., Kumar P.B. V. (eds) Fractals, Wavelets, and their Applications. Springer Proceedings in Mathematics & Statistics, [e-book]. Springer. Disponible en https://www.researchgate.net/publication/287394590_An_Introduction_to_Julia_and_Fatou_Sets. [Consultado 25 de enero de 2017]
Artículos similares
- Jorge Ruiz Llano, Juan Camilo Arroyave Manco, Johana Catalina Arboleda Echavarría, Adriana Patricia Echavarría Izasa, Síntesis hidrotermal de AlPO-5 y SAPO-5 y su evaluación catalítica en la oligomerización de propileno , Revista EIA: Vol. 17 Núm. 33 (2020)
También puede {advancedSearchLink} para este artículo.