Selección óptima del portafolio de proyectos utilizando metaheurísticas de población y trayectoria meta-optimizadas
Optimal Project Portfolio Selection Using Meta-Optimized Population and Trajectory-Based Metaheuristics
Barra lateral del artículo

Términos de la licencia (VER)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Declaración del copyright
Los autores ceden en exclusiva a la Universidad EIA, con facultad de cesión a terceros, todos los derechos de explotación que deriven de los trabajos que sean aceptados para su publicación en la Revista EIA, así como en cualquier producto derivados de la misma y, en particular, los de reproducción, distribución, comunicación pública (incluida la puesta a disposición interactiva) y transformación (incluidas la adaptación, la modificación y, en su caso, la traducción), para todas las modalidades de explotación (a título enunciativo y no limitativo: en formato papel, electrónico, on-line, soporte informático o audiovisual, así como en cualquier otro formato, incluso con finalidad promocional o publicitaria y/o para la realización de productos derivados), para un ámbito territorial mundial y para toda la duración legal de los derechos prevista en el vigente texto difundido de la Ley de Propiedad Intelectual. Esta cesión la realizarán los autores sin derecho a ningún tipo de remuneración o indemnización.
La autorización conferida a la Revista EIA estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo en el Sistema Open Journal Systems de la Revista EIA, así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
Todos los contenidos de la Revista EIA, están publicados bajo la Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Licencia
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Contenido principal del artículo
Resumen
Descargas
Detalles del artículo
Cristian David Candia Garcia, Escuela Colombiana de Ingeniería Julio Garavito
Estudiante de Maestria en Ingeniería Industrial de la Escuela Colombiana de Ingeniería Julio Garavito. Consultor en analítica de datos en IQuartil SAS.Luis Francisco López Castro, Escuela Colombiana de Ingeniería Julio Garavito
Ingeniero Industrial de la Escuela Colombiana de Ingeniería Julio Garavito, Máster en Diseño y Gestión de Procesos de la Universidad de la Sabana. Experiencia académica extensa como profesor del progama de Ingeniería Industrial de la Escuela Colombiana de Ingeniería Julio Garavito e Investigador en las áreas de ingeniería de producción, algoritmos evolutivos, simulación y optimización de operaciones.
Sonia Alexandra Jaimes Suárez, Escuela Colombiana de Ingeniería Julio Garavito
Máster en Ingeniería industrial con énfasis en Optimización y Logística de la Pontificia Universidad Javeriana de Bogotá, Especialista en Economía para Ingenieros e Ingeniera Industrial de la Escuela Colombiana de Ingeniería Julio Garavito. En la Escuela es Directora de la Maestría de Ingeniería Industrial y del Centro de Estudios de Optimización, así como Coordinadora del Énfasis en Logística de la Maestría en Ingeniería Industrial.
Profesora asistente en pregrado y posgrado e investigadora del Centro de Investigaciones en Manufactura y Servicios – CIMSER en la Escuela Colombiana de Ingeniería Julio Garavito.
Referencias (VER)
Agarwal, A., 2018. Multi-echelon Supply Chain Inventory Planning using Simulation-Optimization with Data Resampling. arXiv:1901.00090 [math].
Baykasoğlu, A., Karaslan, F.S., 2017. Solving comprehensive dynamic job shop scheduling problem by using a GRASP-based approach. International Journal of Production Research 55, 3308–3325. https://doi.org/10.1080/00207543.2017.1306134
Boryssenko, A., Herscovici, N., 2018. Machine Learning for Multiobjective Evolutionary Optimization in Python for EM Problems, in: 2018 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting. Presented at the 2018 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, pp. 541–542. https://doi.org/10.1109/APUSNCURSINRSM.2018.8609394
Cetin, O., 2018. Parallelizing simulated annealing algorithm fot TSP on massively parallel architectures. Journal of Aeronautics and Space Technologies 11, 75–85.
Chen, W., 2015. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem. Physica A: Statistical Mechanics and its Applications 429, 125–139. https://doi.org/10.1016/j.physa.2015.02.060
Colombia Compra Eficiente, 2017. Guía para procesos de contratación de obra pública.
Crawford, B., Soto, R., Cuesta, R., Paredes, F., 2014. Application of the Artificial Bee Colony Algorithm for Solving the Set Covering Problem [WWW Document]. The Scientific World Journal. https://doi.org/10.1155/2014/189164
Deng, J., Wang, L., 2017. A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem. Swarm and Evolutionary Computation 32, 121–131. https://doi.org/10.1016/j.swevo.2016.06.002
Eshlaghy, A.T., Razi, F.F., 2015. A hybrid grey-based k-means and genetic algorithm for project selection. International Journal of Business Information Systems 18, 141–159. https://doi.org/10.1504/IJBIS.2015.067262
Faezy Razi, F., Shadloo, N., 2017. A Hybrid Grey based Two Steps Clustering and Firefly Algorithm for Portfolio Selection. Journal of Optimization in Industrial Engineering 10, 49–59. https://doi.org/10.22094/joie.2017.276
Faia, R., Pinto, T., Vale, Z., 2016. GA optimization technique for portfolio optimization of electricity market participation, in: 2016 IEEE Symposium Series on Computational Intelligence (SSCI). Presented at the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, Athens, Greece, pp. 1–7. https://doi.org/10.1109/SSCI.2016.7849858
Garcia, C., 2014. A metaheuristic algorithm for project selection and scheduling with due windows and limited inventory capacity. Kybernetes 43, 1483–1499. https://doi.org/10.1108/K-11-2013-0245
Ghayour, F., Solimanpur, M., Mansourfar, G., 2015. Optimum portfolio selection using a hybrid genetic algorithm and analytic hierarchy process. Studies in Economics & Finance 32, 379–394. https://doi.org/10.1108/SEF-08-2012-0085
Griffith, A., Pomerance, A., Gauthier, D.J., 2019. Forecasting Chaotic Systems with Very Low Connectivity Reservoir Computers. arXiv:1910.00659 [nlin, stat].
Hiassat, A., Diabat, A., Rahwan, I., 2017. A genetic algorithm approach for location-inventory-routing problem with perishable products. Journal of Manufacturing Systems 42, 93–103. https://doi.org/10.1016/j.jmsy.2016.10.004
Instituto Nacional de Vías, 2017. Concurso de méritos abierto CMA-DO-SRN-003-2017.
Interian, R., Ribeiro, C.C., n.d. A GRASP heuristic using path-relinking and restarts for the Steiner traveling salesman problem. International Transactions in Operational Research 24, 1307–1323. https://doi.org/10.1111/itor.12419
INVIAS, 2018. Concurso de méritos abierto CMA-DO-SRT-063-2018.
Kumar, M., Mittal, M.L., Soni, G., Joshi, D., 2019. A Tabu Search Algorithm for Simultaneous Selection and Scheduling of Projects, in: Yadav, N., Yadav, A., Bansal, J.C., Deep, K., Kim, J.H. (Eds.), Harmony Search and Nature Inspired Optimization Algorithms, Advances in Intelligent Systems and Computing. Springer Singapore, pp. 1111–1121.
Martínez-Vega, D.A., Cruz-Reyes, L., Rangel-Valdez, N., Santillán, C.G., Sánchez-Solís, P., Villafuerte, M.P., 2019. Project Portfolio Selection with Scheduling: An Evolutionary Approach. 1 10, 25–31.
Mira, C., Feijao, P., Souza, M.A., Moura, A., Meidanis, J., Lima, G., Schmitz, R., Bossolan, R.P., Freitas, I.T., 2012. A GRASP-based Heuristic for the Project Portfolio Selection Problem, in: 2012 IEEE 15th International Conference on Computational Science and Engineering. Presented at the 2012 IEEE 15th International Conference on Computational Science and Engineering (CSE), IEEE, Paphos, Cyprus, pp. 36–41. https://doi.org/10.1109/ICCSE.2012.102
Neumüller, C., Wagner, S., Kronberger, G., Affenzeller, M., 2012. Parameter Meta-optimization of Metaheuristic Optimization Algorithms, in: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (Eds.), Computer Aided Systems Theory – EUROCAST 2011, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 367–374.
Osaba, E., Carballedo, R., Diaz, F., Onieva, E., Lopez, P., Perallos, A., 2014. On the influence of using initialization functions on genetic algorithms solving combinatorial optimization problems: A first study on the TSP, in: 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS). Presented at the 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), IEEE, Linz, Austria, pp. 1–6. https://doi.org/10.1109/EAIS.2014.6867465
Panadero, J., Doering, J., Kizys, R., Juan, A.A., Fito, A., 2018. A variable neighborhood search simheuristic for project portfolio selection under uncertainty. Journal of Heuristics. https://doi.org/10.1007/s10732-018-9367-z
Pedersen, M.E.H., 2010. Tuning & Simplifying Heuristical Optimization (phd). University of Southampton.
Resende, M.G.C., Ribeiro, C.C., 2016. Optimization by GRASP. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4939-6530-4
Shadkam, E., Delavari, R., Memariani, F., Poursaleh, M., 2015. Portfolio Selection by the Means of Cuckoo Optimization Algorithm. International Journal on Computational Science & Applications 5, 37–46. https://doi.org/10.5121/ijcsa.2015.5304
Yu, L., Wang, S., Wen, F., Lai, K.K., 2012. Genetic algorithm-based multi-criteria project portfolio selection. Annals of Operations Research 197, 71–86. https://doi.org/10.1007/s10479-010-0819-6