Estimation of Water Erosion and the Transportation of Sediments in the Upper Basin of Cuxtepeques River, Chiapas, Mexico
Estimation of Water Erosion and the Sediment Transportation in the Upper Basin of Cuxtepeques River, Chiapas, Mexico
Contenido principal del artículo
Resumen
Changes in land use and increased intensity of rainfall are factors of greater influence that accelerate the soil erosion process. The application of basin scale sedimentological models integrated to Geographic Information Systems (GIS), is a tool that allows the definition of critical zones, and of this the establishment of measures of control of processes of production and transport of sediments. This study evaluates the water erosion using the Universal Soil Loss Equation (USLE), five scenarios were studied: corresponding to the start of operations of the El Portillo II (1980) dam, and the before and after the two extreme events in the basin (September 1998 and October 2005). The transport of sediments was evaluated by regression, using full annually records (eight years) of flows of two gauging stations in the basin. Overall, variations in erosion rates were observed with changes in the vegetal coverage and statistical homogeneity in the gauging data, which allowed adjust them to a regression model, with correlation coefficient upper to 88%.
Descargas
Detalles del artículo
Referencias (VER)
Arellano-Monterrosas, J. L. (1994). Degradación del Suelo por Erosión Hídrica en Chiapas: Evaluación y Principios Tecnológicos para su Control, tesis (Ingeniero Agrónomo), México, Universidad Autónoma de Chapingo, pp. 149-251.
Arellano-Monterrosas, J. L. (2005). Apropiación Territorial, Degradación Ambiental y Gestión de Recursos Hídricos en la Cuenca Superior del río Custepec, Chiapas, tesis (Maestría en Ciencias), México, Universidad Autónoma de Chapingo, pp. 46-481.
Bauman, J. and Arellano-Monterrosas, J. L. (2003). Measuring Rainfall Erosivity Characteristics and Annual R-Factors for Adjustment of the USLE in a Tropical Climate. In: 25 years of assessment of erosion-proccedings. Gheat, Belgium. D. Gabriels and W. Cornelis (eds.), pp. 69-74.
Campos-Aranda, D. F. (2010). Verificación de la Homogeneidad Regional Mediante Tres Pruebas Estadísticas. Tecnología y Ciencias del Agua, 1(4) octubre-diciembre, pp. 157-165. Disponible en: http://www.revistatyca.org.mx/ojs/index.php/tyca/article/view/78.
Campos-Aranda, D. F. (2011). Estimación de Envolventes de Diseño por Subregiones Hidrológicas. Tecnología y Ciencias del Agua, 2(4) octubre-diciembre, pp. 175-194. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-24222011000400012&lng=es&nrm=iso .
Castro-Quintero, A. F., Lince-Salazar, L. A. y Riñao-Melo, O. (2017). Determinación del Riesgo a la Erosión Potencial Hídrica en la Zona Cafetera del Quindío, Colombia. Revista de Investigación Agraria y Ambiental, [e-journal] 8(1) enero-junio, pp. 17-26. Disponible en: https://doi.org/10.22490/21456453.1828.
Challenger, A. y Dirzo, R. (2009). Estado de Conservación y Tendencia de Cambio, Primera parte: Factores de cambio y estado de la biodiversidad, En: CONABIO: Capital Natural de México, Vol. 2, México, pp. 35-73.
CORTOLIMA (2006). Fase de diagnóstico: Pérdida de Suelos. En: Plan de Ordenación y Manejo de la Cuenca Hidrográfica Mayor del Río Totare [e-book]. Ibagué, Colombia: Coorporación Regional Autónoma de Tolima, pp. 834-838. Disponible en: http://www.cortolima.gov.co/sites/default/files/images/stories/centro_documentos/pom_totare/diagnostico/m_212perdida_de_suelos_totare.pdf.
Cuevas, M. L., Garrido, A., Pérez-Damián, J. L. y Iura-González, D. (2010). Procesos de Cambio de Uso de Suelo y Degradación de la Vegetación Natural, En: INECC: Las Cuencas Hidrográficas de México, pp. 96-103.
Desmet, P. y, Govers, G. (1996). A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units. Journal of Soil and Water Conservation, 51(5), pp. 427-433. Available at: http://search.ebscohost.com/login.aspx?direct=true&db=edsagr&AN=edsagr.US9633753&lang=es&site=eds-live.
Durigón, V. L., Antunes, M. H., Sánchez de Oliveira, P. T., Fonseca de Carvalho, D. and Fernándes, M. M. (2014). NDVI Time Series for Monitoring RUSLE Cover Management Factor in a Tropical Watershed. International Journal of Remote Sensing, [e-journal] 35(2), pp. 441-453. Available at: https://doi.org/10.1080/01431161.2013.871081.
ESRI (Enviromental System Research Institute), 2017. ArcGis Desktop/ArcMap 10. [Computer Program]. Redlands, California, U.S.A.: Enviromental System Research Institute Inc.
Fabián-Rivera, J. G., Mejía-Zermeño, R., Soto-Cortéz, G. y Val-Segura, R. (2005). Aspectos de la Medición de Sedimentos. En: Rivera-Trejo, F., Gutiérrez-López, A., Val-Segura, R., Mejía-Zermeño, R., Sánchez-Ruiz, P. A., Aparicio-Mijares, J., y Díaz-Flores, L. L., eds. La Medición de Sedimentos en México. Jiutepec, Morelos: IMTA-UJAT, pp. 11-15.
FAO. (2006). World Reference Base for Soil Resources 2006. A Framework for International Classification, Correlation and Communication, Roma, FAO, 2006.
Flores-López, H. E., Martínez-Menes, M., Oropeza-López, J. L., Mejía-Saens, E. y Carrillo-González, R. (2003). Integración de la EUPS a un SIG para Estimar la Erosión Hídrica del Suelo en Una Cuenca Hidrográfica de Tepatitlán, Jalisco, México. Terra Latinoamericana, 21(2) abril-junio, pp. 233-244. Disponible en: https://www.redalyc.org/articulo.oa?id=573/57315595010.
Gottschalk, C. L. (1964). Sedimentation. Part. I. Reservoir Sedimentation, In: Chow, V. T. Handbook of Applied Hydrology: A Compendium of Water-Resources Technology, Section 17-I, New York: McGraw-Hill, pp. 1418.
Hexagón Geospatial, 2017. Erdas Imagine 8.3. [Computer Program] Stockholm, Sweden: Hexagon AB Inc.
Krysanova, V., Williems, J., Bürger, G. and Ósterle, H. (2002). The Linkage Between Hydrological Processes and Sediment Transport at The River Basin Scale: A Modelling Study, In: Summer, W. y Walling, D. E., eds. Modelling Erosion, Sediment Transport and Sediment Yield, Thechnical Documents in Hydrology. No. 60. Paris, France: UNESCO-IHP, pp. 147-174.
Pereyra-Díaz, D., Gómez-Romero, L. y Loeza-Hernández, F. (2005). Pérdida de Suelo por Erosión Hídrica, En: Rivera-Trejo, F., Gutiérrez-López, A., Val-Segura, R., Mejía-Zermeño, R., Sánchez-Ruiz, P. A., Aparicio-Mijares, J., y Díaz-Flores, L. L., eds. La Medición de Sedimentos en México. Jiutepec, Morelos: IMTA-UJAT, pp. 61-84.
Pérez-Nieto, S. (2013). Erosión Hídrica en Cuencas Costeras de Chiapas y Estrategias para su Restauración Hidrológico Ambiental, tesis (Doctorado en Ingeniería), México, Colegio de Posgraduados, pp. 2.53-2.67.
Secretaría de Recursos Hidráulicos. (1972). Segunda Parte: Datos Hidrométricos y de Acarreo de Azolves en Suspensión, En: Boletín Hidrológico Núm. 38: Regiones Hidrológicas Núm. 30 (Grijalva Usumacinta), Núm. 31 (Yucatán oeste), Núm. 32 (Yucatán norte) y Núm. 33 (Yucatán este), Tomo I. México, D. F.
USGS (United States Geological Survey). (2018). GloVis. (United States Department of the Interior). https://glovis.usgs.gov/app.
Walling, D. E. (2009). The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges. The United Nations World Water Assessment Program. Scientific Paper. Paris, France: UNESCO-IHP, pp. 2-22.
Wischmeier, W. H. y, Smith, D. D. (1978). Agriculture Handbook 537: Predicting Rainfall Erosion Losses, a Guide to Conservation Planning, Washington DC, USA: United States Department of Agriculture, pp. 4-34.