Análisis y perspectivas del tratamiento anaerobio y el aprovechamiento de lodos biológicos en América Latina
Analysis and perspectives of anaerobic treatment and the use of biological sludge in Latin America
Contenido principal del artículo
Resumen
Los lodos biológicos son residuos generados en las plantas de tratamiento de agua residual (PTAR), como consecuencia de la sedimentación de material suspendido en las unidades primarias y por el crecimiento de la biomasa en el tratamiento biológico. Estos lodos representan una generación que alcanza cifras de 1.400 t/día en Canadá, 2.000 t/día en Estados Unidos de Norte América, 1.753 t/día en México, 1.232 t/día en Brasil entre otros, con un crecimiento esperado del 60% para el 2050. Históricamente, este tipo de sólidos, han sido dispuestos en rellenos sanitarios contribuyendo con los impactos ambientales, sociales y económicos relacionados con la gestión de residuos; sin embargo, en las últimas décadas y a nivel global se ha propuesto la aplicación de la digestión anaerobia (DA) como alternativa para el tratamiento y aprovechamiento de residuos orgánicos, dado su fácil operación, valor económico y por la posibilidad de obtener subproductos como biogás y abono. En los países latinoamericanos esta situación no es particularmente diferente, donde algunas investigaciones han centrado sus esfuerzos en estudiar las diferentes variables que tienen relación con la digestión anaerobia. En el presente artículo de revisión bibliográfica se analizaron 56 trabajos de investigación relacionados con procesos de co-digestión anaerobia, pretratamiento, modelos matemáticos, microorganismos, parámetros de operación y evaluación económica; donde, si bien se evidencia un avance importante en relación con la temática, se requiere de mayores esfuerzos que permitan la comprensión y ajuste de los diferentes parámetros, especialmente, en escalas piloto y real, posibilitando su implementación en la gestión de residuos.
Descargas
Detalles del artículo
Referencias (VER)
Alberico. R., Aguiar. L., Fernandes. H., Colen. F., Rodrigues. Al., Macedo. E., Souza. F., Henrique. S., Aparecida. B. y Viana. I. (2019). Characterization of the primary sludge from pharmaceutical industry effluents and final disposition. Processes. 7(4) 1-10. https://doi.org/10.3390/pr7040231.
Alves. A., Mambeli. R., Tiago. G., Silva. I. y Martuscelli. E. (2018). Analysis of biogas produced by the anaerobic digestion of sludge generated at wastewater treatment plants in the South of Minas Gerais, Brazil as a potential energy source. Sustainable cities and society. 41:139 -153. DOI: 10.1016/j.scs.2018.04.035
Alves. I., Mahler. C., Oliveira. L., Reis. M. y Bassin. J. (2020). Assessing the use of crude glycerol from biosiesel production as an alternative to boost methane generation by anaerobic co-digestion os sewage sludge. Biomass and Bioenergy. 143. https://doi.org/10.1016/j.biombioe.2020.105831.
Appels. L., Lauwers. J., Degréve. J., Helsen. L., Lievens. B., Willems. K., et al. (2011). Anaerobic digestion in global bio-energy production: potential and research challenges. Renew sutain. Energy Rev. 15 (9): 4295-430.
Arévalo-Arbeláez. A., Bedoya-Urrego. K., Cabarcas-Jaramillo. F. y Alzate-Restrepo. J. (2017). Descripción de la microbiota bacteriana residente en el biosólido generado en la planta de tratamiento de aguas residuales San Fernando. Itagüi, Colombia. Rev Salud Pública. 19 (6): 806-813. I:ht t ps: //doi.org /10.154 46/rsap.V19n6.67950
Angelidaki. I., Alves. M., Bolzonella. D. y Borzacconi. L. (2009). Defining the biomethane potential (BMP) of soil organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59 (5). 927-934.
Ashekuzzaman. S., Forrestal. P., Richards. K., y Fenton. O. (2019). Dairy industry derived wastewater treatment sludge: Generation, type, and characterization of nutrients and metals for agricultural reuse. Journal of Cleaner Production. 230.1266-1275.
Aragón-Briseño. CI., Grasham. O., Ross. AB., Dupont. V., Camargo-Valero. MA. (2020). Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renewable Energy.. 157: 959-973. https://doi.org/10.1016/j.renene.2020.05.021.
Arrieta. G., Raquena. I., Toro. J. y Zamorano. M. (2016). Adaptation of EVIAVE metodology for monitoring and follow-up when evaluating the environmental impacts of landfills. Environmental impacts assessment review. (56): 168-179.
Bedoya. K., Acevedo. J., Peláez. C. y Agudelo. S. (2013). Caracterización de biosólidos generados en planta de tratamiento de agua residual San Fernando, Itagüí (Antioquia, Colombia). Revista de Salud Pública. 15 (5): 178-190.
Buswell. M. (1947). Important consideration in sludge digestion. Part II-Microbiology and theory of anaerobic digestion. Sewage works journal 19(1), 28-36.
Cabrol. L., Urra. J., Rosenkranz. F., Araya. P., Plugge. C., Lesty. Y. y Chamy. R. (2015). Influence of phenylacetic acid pulses on anaerobic digestion performance and archaeal community structure in WWTP sewage sludge digesters. Water Science & Technology. 71(12). 1790-1799. https://doi.org/10.2166/wst.2015.165
Campello. L., Barros. R., Tiago. G. & dos Santos. I. (2020) Analysis of the economic viability of the use of biogas produced in wastewater treatment plants to generate electrical energy. Environment, Development and sustainability. https://doi.org/10.1016/j.enpol.2013.10.028.
Carrera-Chapela. F., Donoso-Bravo. A., Jeison. D., Díaz. I., Gonzalez. J. y Ruiz-Filipi. (2016). G. Development, identification and validation of a mathematical model of anaerobic digestion of sewage sludge focusing on H2S formation and transfer. Biochemical Engineering. 112.13-19. https://doi.org/10.1016/j.bej.2016.03.008
Chan. E., Wall. D., O’shea. R., Méndez. R., Morero. M. y Murphy. J. (2018). An economic and carbon analysis of biomethane production from food waste to be used as a transport fuel in Mexico. Journal of Cleaner Production. 196. 852-862. https://doi.org/10.1016/j.jclepro.2018.06.051.
Cordoba. A, Carrera. C., Zepeda. A. y Ruiz. J. (2019). Enhancing the performance and stability of the anaerobic digestion of sewage sludge by zero valent iron nanoparticles dosage. Bioresource Technology. 275. 352-359. https://doi.org/10.1016/j.biortech.2018.12.086.
Córdoba. V., Fernández. M y Santalla. E. (2018). The effect of substrate/inoculum ration on the kinetics of methane production in swinw wastewater anaerobic digestion. Advances in Environmental Biotechnology abd Enginnering. 25. 21308-21317 DOIhttps://doi.org/10.1007/s11356-017-0039-6
Córdova. A., Carrera. C., Alzate. L., Zepeda. A. y Ruiz. J. (2019). Nanoferrosonication: A novel strategy for intensifying the methanogenic process in sewage sludge. Bioresource Technology. 276.318-324. https://doi.org/10.1016/j.biortech.2019.01.021
Damaceno. F., Buligon. E., Restrepo. J., Chiarelotto. M., Niedzialkoski. R., Costa. L., et al. (2019) Semi-continuous anaerobic co-digestion of flotation sludge from broiler chicken slaughter and sweet potato: Nutrients and energy recovery. Science of the Total Environment. (683), 773-781. https://doi.org/10.1016/j.scitotenv.2019.05.314
Dardot. L., Mambeli. R., Tiago. G. y Silva. I. (2020). Analysis of the economic viability of the use of biogas produced in wastewater treatment plants to generate electrical energy. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-00689-y
de los Cobos. D., Villalba. M. y Noyola. A. (2015). Effective pathogen removal by low temperature thermal pre-treatment and anaerobic digestion for Class A biosolids production from sewage sludge. Jorurnal of Water. 5(1). 56-63. https://doi.org/10.2166/washdev.2014.036
Díaz. M., Espitia. S. y Molina. F. (2002). Digestión anaerobia: una aproximación a la tecnología. Medellín, Colombia: Unilibros.
Dolejs. P., Varga. Z., Luza. B., Pícha. A., Jenicek. P., Jeison. D. y Bartacek. J. (2019). Maximizing energy recovery from wastewater via bioflocculation-enhanced primary treatment: a pilot scale study. https://doi.org/10.1080/09593330.2019.1697377.
Dong. P., Asyifah. N., Kadokami. K., García-Contreras. R., Wood. T. y Maeda. T. (2019). Quorum sensing between Gram-negative bacteria resposible for mathane production in a complex waste sewage sludge consortium. Environmental Biotechnology. 103. 1485-1495. https://doi.org/10.1007/s00253-018-9553-9.
Donoso-Bravo. A. y Fdz-Polanco. M. (2013). Anaerobic co-digestión of sewage sludge and grease trap: Assesment of enzyme addition. Process Biochemistry. 48. 936-940. http://dx.doi.org/10.1016/j.procbio.2013.04.005.
Donoso-Bravo. A., Pérez. S. y Fdz-Polanco. F. (2014). Simplified mechanistic model for the two-stage anaerobic degradation of sewage sludge. Environmental Technology. 36 (10). 1334-1346. https://doi.org/10.1080/09593330.2014.988186
Donoso-Bravo. A., Ortega. V., Lesty. Y., Vanden. H. y Olivares. D. (2019). Assessing the stability of anaerobic co-digestion in the context of a WWTP with thermal pre-treatment of sewage sludge. Case study in Chile. Waste Management. 100: 240-248. https://doi.org/10.1016/j.wasman.2019.09.025
dos Santos. D., Galdino. L., Marquez. T., Alves. M. y Thomé. J. (2020). Development of a horizontal reactor with radial agitation to synthesis bio-methane from biomass waste and domestic sewage sludge. Journal of Cleaner Production. 257. https://doi.org/10.1016/j.jclepro.2020.120616.
dos Santos. J., Volschan. I. & Cammarota. M. (2018). Co-digestion of sewage sludge with crude or pretreated glycerol to increase biogas production. Environmental Science and Pollution Research. 25: 21811-21821. https://doi.org/10.1007/s11356-018-2260-3
Ferreira. J., Volschan. I. y Cammarota. M. (2018). Enhanced biogas production in pilot digester treating a mixture of sewage sludge, glycerol and food waste. Energy & Fuels. 32, 6839-6846. DOI: 10.1021/acs.energyfuels.8b00742.
Flores-Asis. R., Méndez-Contreras. J., Alvarado-Lassman. A., Fernández-Lambert. G., Villanueva-Vásquez. D. y Aguilar-Lasserre. A. (2019). Analysis of the behavior for operation parameters in the anaerobic digestion process with thermal pretreatment, using fuzzy logic. Journal of Environmental Science and Healrh. 54(6). 592-602. https://doi.org/10.1080/10934529.2019.1593010
Gato-Trinidad. S., Jayasuriya. N. & Roberts. P. (2011). Understanding urban residential end uses of water. Water Science & Technology. 64 (1): 36-42. https://doi.org/10.2166/wst.2011.436.
Gaur. R. & Suthar. (2017). Anaerobic digestion pf activated sludge, anaerobic granular sludge and cow dung with food waste for enhanced methane production. Journal of Cleaner Production. 164: 557-566. https://doi.org/10.1016/j.jclepro.2017.06.201
Gertner. P., Huiliñir. C., Pinto-Villegas. P., Castillo. A., Montalvo. S. y Guerrero. L. (2017). A new model for including the effect of fly ash on biochemical methane potential. Waste Management. 68:232-239. https://doi.org/10.1016/j.wasman.2017.07.005
González. G., Zamora. A., Carreón. C., Restrián. E. y Houbron . E. (2013). Influencia del tiempo de residencia hidráulica sobre la hidrólisis en codigestión de residuos sólidos, https://www.revistascca.unam.mx/rica/index.php/rica/article/view/43555.
Grobelak. A., Grosser. A., Kacprzak. M. y Kamizela. T. (2019). Sewage sludge processing and management in small and medium-size municipal wastewater treatment plant-new technical solution. Journal of Environmental Management. 234. 90-96.
Henry, J. y Heinke, G. (1999) Ingeniería ambiental (2 ed.). Mexico D.F, Mexico: Prentice hall.
Huiliñir. C., Pinto-Villegas. P., Castillo. A., Montalvo. S. y Guerrero. L. (2017). Biochemical methane potential from sewage sludge: Effect of an aerobic pretreatment and fly ash addition as source of trace elements. Waste Management. 64. 140-148. https://doi.org/10.1016/j.wasman.2017.03.023 .
Huiliñir. C., Montalvo. S. y Borja. R. (2018). A new and simple kinetic model for assessing the dynamic behavior and simulating the biochemical methane potential (BMP) of sewage sludge in the presence of fly ash. Research Article. 94. 1509-1519. https://doi.org/10.1002/jctb.5910
Jensen. V., Cammarota. M. y Volschan. I. (2018). Methane Production of Algal Biomass from Facultative Stabilization Pond: Evaluation of Anaerobic Biodegradability and Codigestion with Sewage Sludge. Envoromen. Eng. 144 (5). 1-7. DOI: 10.1061/(ASCE)EE.1943-7870.0001359.
Julio. I., Peláez. C., Molina. F. (2016). Evaluación de la co-digestión anaerobia de lodos de aguas residuales municipales con residuos de alimento. ION. 29 (1): 63-70. DOI: https://doi.org/10.18273/revion.v29n1-2016005
Kempegowda. R., Skreiberg. O., Quang. K. y Selvam. P. (2017). Techno-Economic assessment of thermal co-pretreatment and co-digestion of food waste and sewage sludge for heat, power biochar production. Energy Procedia. 105. 1737-1742. doi: 10.1016/j.egypro.2017.03.498.
Krause. M., Chickering. G., Townsend. T. y Pullammanappaillil. P. (2018). Effects of temperature and particle size on the biochemical methane potential of municipal solid waste components. Waste Management. 71. 25-30. DOI: 10.1016 / j.wasman.2017.11.015
Lacovidou. E., Ohandja. D., y Voulvoulis, N. (2012). Food waste co-digestion with sewage sludge- realizing its potential in th UK, Environ, Manage. 112. 267-274. https://doi.org/10.1016/j.jenvman.2012.07.029
Larney. J. y Angers. D. (2011). The role of organic amendments in soil reclamation: a Review. Bioone. 92 (1). 19-38
Lavergne. C., Bovio-Winkler. P., Etchebehere. C. & Garcia. G. (2020). Towards centralized biogas plants: Co-digestion of sewage sludge and pig manure maintains process performance and active microbiome diversity. Bioresource Technology. 297: 124-135. https://doi.org/10.1016/j.biortech.2019.122442
López Vázquez. C., Buitrón Méndez. G., García. H. y Cervantes Carrillo. F. (2017). Tratamiento biológico de aguas. Principios, modelos y diseño. IWA Publishing. DOI: 10.2166/9781780409146
Lu. Q., He. Z., & Stoffella. P. (2012). Land application of biosolids in the USA: A Review. Applied and Environmental Soil Science. 2012. 1-11. DOI: 10.1155 / 2012/201462
Lwin. C., Maung. K. y Hashimoto. S. (2015). Future sewage sludge generation and sewer pipeline extension in economically developing ASEAN countries. Cycles Waste Manag.
Mason. I. (2006). Mathematical modelling of the composting process: A review. Waste Management. 26. 3-21.
Mendes. C., Esquerre. K. y Matos. L. (2015). Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion. Waste Management. 35. 89-95. https://doi.org/10.1016/j.wasman.2014.10.013.
Montalvo. S., Vielma. S., Borja. R., Hiliñir. C. y Guerrero. L. (2018). Increase in biogas production in anaerobic sludge digestion by combining aerobic hydrolysis and addition of metallic wastes. Renewable Energy. 123. 541-548. https://doi.org/10.1016/j.renene.2018.02.004
Montalvo. S., Cahn. I., Borja. R., Huiliñir. C. y Guerrero. L. (2017). Use of solid residue from thermal power plant (fly ash) for enhancing sewage sludge anaerobic digestion: Influence of fly ash particle size. Bioresource Technology. 244. 416-422. DOI: 10.1016/j.biortech.2017.07.159.
Mora-Cortés. D., Garcés-Gómez. Y. y Pacheco. S. (2020). Improvement of biomethane potential by Anaerobic co-digestion of Sewage sludge and cocoa pod Husks. International Journal of Technology. 11 (3). 482-491. DOI : https://doi.org/10.14716/ijtech.v11i3.4079.
Morero. B., Montagna. A., Campanella. E. y Cafaro. F. (2017). Integrated process design optimization accouting for co-digestion of sludge and municipal solid waste. Capture Aided Chemical Engineering. 40. 853-858. http://dx.doi.org/10.1016/B978-0-444-63965-3.50144-6.
Morero. B., Vicentin. R. y Campanella. E. (2017). Assesment of biogas production in Argentina from co-digestion of sludge and municipal solid waste. Waste Management. 61. 195-205. http://dx.doi.org/10.1016/j.wasman.2016.11.033
Morero. B., Montagna. A., Campanella. E. y Cafaro. D. (2020). Optimal process design for integrated municipal waste management with anergy recovery in Anrgentina. Renewable Energy. (146): 2626-2636. https://doi.org/10.1016/j.renene.2019.08.085.
Mosquera. J., Varela. L., Santis. A., Villamizar. S., Acevedo. P. y Cabeza. I. (2020). Improving anaerobic co-digestion of different residual biomass sources readily available in Colombia by process parameters optimization. Biomass and bioenergy. 142. https://doi.org/10.1016/j.biombioe.2020.105790.
Nghiem. L., Koch. K., Bolzonella. D. & Drewes. J. (2017). Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and Possibilities. Renewable and Sustainable Energy Reviews. 72: 354-362. https://doi.org/10.1016/j.rser.2017.01.062.
Neumanna. P., Barriga. F., Álvarez. C., González. Z. y Vidal. G. (2018). Process performance assessment of advanced anaerobic digestion of sewage sludge including sequential ultrasound–thermal (55 °C) pre-treatment. Bioresource Technology. 262. 42-51. https://doi.org/10.1016/j.biortech.2018.03.057
Neumann. P., González. Z. y Vidal. G. (2017). Sequential ultrasound and low-temperature thermal pretreatment: Process optimization and influence on sewage sludge solubilization, enzyme activity and anaerobic digestion. Bioresource Technology.. 234.179-187. DOI: 10.1016/j.biortech.2017.03.029
Ohemeng-Ntiamoah. J y Datta. T. (2018). Perspectives on variabilities in biomethane potential test parameters and outcome: A review of studies published between 2007 and 2018. Science of the Environment. 664: 1052-1062.
Orellana. E., Davies-Sala. C., Guerrero. L., Verdé. I., Altina. M., Lorenzo. M., et al. (2019). Microbiome network analysis of co-occurrence patterns in anaerobic co-digestion of sewage sludge and food waste. Water Science & Technology. 1956-1965. https://doi.org/10.2166/wst.2019.194.
Ortega-Martinez., E. Sapkaite. I., Fdz-Polanco. F y Donoso-Bravo. A. (2016). From pre-treatment toward inter-Treatment. Getting Some clues from sewage sludge biomethanation. Bioresource Technology. 212. 227-235. https://doi.org/10.1016/j.biortech.2016.04.049
Parra-Orobioa. B., Torres-Lozada. P. y Mamolejo-Rebellón. L. (2016), Influence of the mixing ration on the anaerobic co-digestion of municipal biowaste with domestic wastewater sludge on methane production. Dyna. 83 (199). 86-93 DOI: http://dx.doi.org/10.15446/dyna.v83n199.57382
Peres. S., Monteiro. M., Lima. M., do Nascimento. A. & Perez. M. (2019). Anaerobic Digestion Process for the Production of Biogas from Cassava and Sewage Treatment Plant Sludge in Brazil. Bioenergy Research. 12:150-157. https://doi.org/10.1007/s12155-018-9942-z
Reyes-Contreras. C., Neumann. P., Barriga. F., Venegas. M., Domínguez. C., Bayona. J. y Vidal. G. (2020). Organic micropollutants in sewage sludge: influence of thermal and ultrasound hydrolysis processes prior to anaerobic stabilization. Environmental technology. 41. (11). 1358-1365. https://doi.org/10.1080/09593330.2018.1534892
Rodríguez. A., Muñoz. A., Tique. L., Ladino. J., Santis. A., Cabeza. I. y Acevedo. P. (2018). Influence of Use of co-substrate on the anaerobic co-digestion of municipal solid waste. Chemical Engineering Transactions. 65. 541-546. DOI: 10.3303/CET1865091
Romero. P. (2011). Caracterización de la actividad de lodos de digestión anaerobia y su influencia sobre la reducción de producción de lodos. (Tesis de maestría) Universidad de Cádiz, España.
Silva. F., MSiahler. C., Oliveira. L. y Bassin. J. (2018). Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol. Waste Management. 76. 339-349. doi.org/10.1016/j.wasman.2018.02.039.
Souza. T., Carvajal. A., Donoso-Bravo. A., Peña. M. y Fdz-Polanco. F. (2013). ADM1 calibration using BMP tests for modeling the effect of autohydrolysis pretreatment on the performance of continuous sludge digesters. Water Research. 47. 3244-3254. https://doi.org/10.1016/j.watres.2013.03.041
Tong. H., Tong. Y. y Peng. Y. A. (2019). comparative life cycle assessment on mono-and co-digestion of food waste and sewage sludge. Energy Procedia. 158. 4166-4171.
Udeata. M., Medeiros. G., Silva. V. & Galvao. L. (2019). Basic and procedural requirements for energy potential from biogas of sewage treatment plants. Jurnal of Environmental Management. (236): 380-387. https://doi.org/10.1016/j.jenvman.2018.12.110
Vanegas. M., Leiva. A. y Vidal. G. (2018). Influence of anaerobic digestion with pretreatment on the phytotoxicity of sewage sludge. Water, Air, Soil Pollution. 381.1-11. https://doi.org/10.1007/s11270-018-4025-5.
Vanneckhaute. C., Meers. E., Michels. E., Buysee. J. y Tack. F. (2013). Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. biomass and bioenergy. (49): 239-248.
Verdaguer. M., Molinos-Senante. M. y Poch. M. (2016). Optimal management of substrates in anaerobic co-digestion: an ant colony algorithm approach. Waste Management. 50. 49-54. http://dx.doi.org/10.1016/j.wasman.2016.01.047
Vigueras-Carmona. E., Martínez. M., García. M., Membrillo. I. y Zafra. G. (2016). Effect of particle size on mesophilic anaerobic digestion of thermally pre-treated waste activated sludge. Journ11al of Biotech Research. 7. 11-19.
von Sperling. M. y de Lemos. Chernicharo. (2005) Biological wastewater treatment in warm climate regions. Garais, Brazil: IWA publishing.
Xin. L., Guo. Z., Xiao. X., Peng. C., Zeng. P., Feng. W. y Xu. W. (2019). Feasibility of anaerobic digestion on the release of biogas and heavy metals from rice straw pretreated with sodium hydroxide. Environmental Science and Pollution Research. 26. 19434-19444.