Biocarbón: Estado del arte, avances y perspectivas en el manejo del suelo

Biochar: State-of-the-art advances and perspectives for soil management

Contenido principal del artículo

Sonia Esperanza Aguirre Forero
José

Resumen

El biocarbón generado a partir de la pirolisis de materiales orgánicos no solo reduce las emisiones de GEI, sino que impacta muchas otras propiedades físicas, químicas y biológicas del suelo.


El objetivo del presente artículo fue el de presentar una revisión sistemática de bases de datos en línea acerca del avance y tendencias de conocimiento existente sobre Biocarbón, tema significativo que contribuye a la actualización, síntesis y difusión de conocimientos y permite clasificar el flujo creciente de información e identificar aspectos acreditados de 2011 a 2022.


Durante el periodo, se recopilaron 253 artículos científicos y se seleccionaron 119; se trabajó redes de co-ocurrencia con información representada gráficamente para visualizar número total de conexiones entre entidades, agrupamiento (subdominios) y localizar sinónimos, entre otros. Uno de los criterios de selección fue tipo de publicación y la sinopsis del estudio del efecto del biocarbón en suelo, importancia ambiental y uso en el sector agrícola, así como los enfoques metodológicos del proceso de investigación y viabilidad de implementación.


Los resultados evidenciaron notable incremento de investigación en el tema en los últimos años, con reportes de efectividad, como acondicionador, remediador de suelos, mitigación de GEI y una tendencia para descontaminación de aguas y suelos con un positivo avance de nuevas investigaciones. No obstante, es necesario supervisar los efectos de su aplicación a mediano y largo plazo para originar procesos de producción más limpia en el sector agrícola

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Citaciones

Crossref
Scopus
Europe PMC

Referencias (VER)

Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Zia-Ur-Rehman, M; Qayyum M. F.; Ok, Y. S.; Murtaza, G. (2018). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research, 25(26), 25668–25680. https://doi.org/10.1007/s11356-017-8987-4

Abideen, Z.; Koyro, H. W.; Huchzermeyer, B.; Gul, B.; Khan, M. A. (2020). Impact of a biochar or a biochar-compost mixture on water relation, nutrient uptake and photosynthesis of Phragmites karka. Pedosphere, 30(4), 466–477. https://doi.org/10.1016/S1002-0160(17)60362-X

Adejumo, S. A.; Owoseni, O.; Mur, L. A. J. (2021). Low light intensity and compost modified biochar enhanced maize growth on contaminated soil and minimized Pb induced oxidative stress. Journal of Environmental Chemical Engineering, 9(2), 104764. https://doi.org/10.1016/j.jece.2020.104764

Adusu, D.; Abugre, S.; Dei-Kusi, D. (2021). Potential of biochar for minesoil amendment and floristic diversity enhancement at the yongwa quarry site in the eastern region of ghana. Agricultural Science Digest, 41(1), 61–65. https://doi.org/10.18805/ag.D-254

Agbede, T. M.; Adekiya, A. O. (2020). Influence of biochar on soil physicochemical properties, erosion potential, and maize (Zea mays L.) grain yield under sandy soil condition. Communications in Soil Science and Plant Analysis, 51(20), 2559-2568. https://doi.org/10.1080/00103624.2020.1845348

Agbede, T. M.; Oyewumi, A. (2022). Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resources, Environment and Sustainability, 7, 100051. https://doi.org/10.1016/j.resenv.2022.100051

Alcívar, M.; Zurita-Silva, A.; Sandoval, M.; Muñoz, C.; Schoebitz, M. (2018). Reclamation of saline-sodic soils with combined amendments: Impact on quinoa performance and biological soil quality. Sustainability, 10(9), 3083. https://doi.org/10.3390/su10093083

Ali, I.; Ullah, S.; He, L.; Zhao, Q.; Iqbal, A.; Wei, S.; Shah, T.; Ali, N.; Bo, Y.; Adnan, M.; Amanullah; Jiang, L. (2020). Combined application of biochar and nitrogen fertilizer improves rice yield, microbial activity and N-metabolism in a pot experiment. PeerJ, 8, e10311. https://doi.org/10.7717/peerj.10311

Ali, K.; Arif, M.; Jan, M. T.; Khan, M. J.; Jones, D. L. (2015). Integrated use of biochar: A tool for improving soil and wheat quality of degraded soil under wheat-maize cropping pattern. Pakistan Journal of Botany, 47(1), 233–240.

Andrés, P.; Rosell-Melé, A.; Colomer-Ventura, F.; Denef, K.; Cotrufo, M. F.; Riba, M.; Alcañiz, J. M. (2019). Belowground biota responses to maize biochar addition to the soil of a Mediterranean vineyard. Science of the total environment, 660, 1522-1532. https://doi.org/10.1016/j.scitotenv.2019.01.101

Are, K. S.; Adelana, A. O.; Fademi, I. O.; Aina, O. A. (2017). Improving physical properties of degraded soil: Potential of poultry manure and biochar. Agriculture and Natural Resources, 51(6), 454–462. https://doi.org/10.1016/j.anres.2018.03.009

Aziz, H.; Wang, X.; Murtaza, G.; Ashar, A.; Hussain, S.; Abid, M.; Murtaza, B.; Saleem, M. H.; Fiaz, S.; Ali, S. (2021). Evaluation of compost and biochar to mitigate chlorpyrifos pollution in soil and their effect on soil enzyme dynamics. Sustainability, 13(17), 9695. https://doi.org/10.3390/su13179695

Bai, X.; Fernandez, I. J.; Spencer, C. J. (2022). Chemical Response of Soils to Traditional and Industrial Byproduct Wood Biochars. Communications in Soil Science and Plant Analysis, 53(6), 737–751. https://doi.org/10.1080/00103624.2022.2028812

Bashagaluke, J. B.; Logah, V.; Opoku, A.; Tuffour, H. O.; Sarkodie-Addo, J.; Quansah, C. (2019). Soil loss and run-off characteristics under different soil amendments and cropping systems in the semi-deciduous forest zone of Ghana. Soil Use and Management, 35(4), 617–629. https://doi.org/10.1111/sum.12531

Bednik, M.; Medyńska-Juraszek, A.; Dudek, M.; Kloc, S.; Kręt, A.; Labaz, B.; Waroszewski, J. (2020). Wheat straw biochar and NPK fertilization efficiency in sandy soil reclamation. Agronomy, 10(4), 496. https://doi.org/10.3390/agronomy10040496

Bello, A.; Wang, B.; Zhao, Y.; Yang, W.; Ogundeji, A.; Deng, L.; Egbeagu, U. U.; Yu, S.; Zhao, L.; Li, D.; Li, D.; Xu, X. (2021). Composted biochar affects structural dynamics, function and co-occurrence network patterns of fungi community. Science of the Total Environment, 775:145672. https://doi.org/10.1016/j.scitotenv.2021.145672

Bu, X.; Xue, J.; Zhao, C.; Wu, Y.; Han, F. (2017). Nutrient leaching and retention in riparian soils as influenced by rice husk biochar addition. Soil Science, 182(7), 241–247. https://doi.org/10.1097/SS.0000000000000217

Chávez-Garcia, E.; Siebe, C. (2019). Rehabilitation of a highly saline-sodic soil using a rubble barrier and organic amendments. Soil and Tillage Research, 189, 176–188. https://doi.org/10.1016/j.still.2019.01.003

Chen, D.; Liu, W.; Wang, Y.; Lu, P. (2022). Effect of biochar aging on the adsorption and stabilization of Pb in soil. Journal of Soils and Sediments, 22(1), 56-66. https://doi.org/10.1007/s11368-021-03059-x

Cruz-Méndez, A. S.; Ortega-Ramírez, E.; Lucho-Constantino, C. A.; Arce-Cervantes, O.; Vázquez-Rodríguez, G. A.; Coronel-Olivares, C.; Beltrán-Hernández, I. (2021). Bamboo biochar and a nopal-based biofertilizer as improvers of alkaline soils with low buffer capacity. Applied Sciences, 11(14), 6502. https://doi.org/10.3390/app11146502

Cruz-O’byrne, R.; Casallas-Useche, C.; Piraneque-Gambasica, N.; Aguirre-Forero, S. (2021). Knowledge Landscape of Starter Cultures: A Bibliometric and Patentometric Study. Recent Patents on Biotechnology, 15(3), 232–246. https://doi.org/10.2174/1872208315666210928115503

Cui, Q.; Xia, J.; Peng, L.; Zhao, X.; Qu, F. (2022). Positive Effects on Alfalfa Productivity and Soil Nutrient Status in Coastal Wetlands Driven by Biochar and Microorganisms Mixtures. Frontiers in Ecology and Evolution, 9, 798520. https://doi.org/10.3389/fevo.2021.798520

De la Rosa, J. M.; Santa‐Olalla, A.; Campos, P.; López‐Núñez, R.; González‐Pérez; J. A.; Almendros, G.; Knicker, H. E.; Sánchez‐Martín, Á.; Fernández‐Boy, E. (2022). Impact of Biochar Amendment on Soil Properties and Organic Matter Composition in Trace Element‐Contaminated Soil. International Journal of Environmental Research and Public Health, 19(4), 2140. https://doi.org/10.3390/ijerph19042140

Delaye, L. A. M.; Ullé, J. Á.; Andriulo, A. E. (2020). Biochar application in a degraded soil under sweet-potato production. Effect on edaphic properties. Ciencia del Suelo, 38(1), 162–173.

Dong, X.; Zhang, Z.; Wang, S.; Shen, Z.; Cheng, X.; Lv, X.; Pu, X. (2022). Soil properties, root morphology and physiological responses to cotton stalk biochar addition in two continuous cropping cotton field soils from Xinjiang, China. PeerJ, 10, e12928. https://doi.org/10.7717/peerj.12928

Espinosa, N. J.; Moore, D. J. P.; Rasmussen, C.; Fehmi, J. S.; Gallery, R. E. (2020). Woodchip and biochar amendments differentially influence microbial responses, but do not enhance plant recovery in disturbed semiarid soils. Restoration

Ecology, 28, S381–S392. https://doi.org/10.1111/rec.13165

Fang, B.; Lee, X.; Zhang, J.; Li, Y.; Zhang, L.; Cheng, J.; Wang, B.; Cheng, H. (2016). Impacts of straw biochar additions on agricultural soil quality and greenhouse gas fluxes in karst area, Southwest China. Soil Science and Plant Nutrition, 62(5–6), 526–533. https://doi.org/10.1080/00380768.2016.1202734

Fang, W.; Wang, Q.; Han, D.; Liu, P.; Huang, B.; Yan, D.; Ouyang, C.; Li, Y.; Cao, A. (2016). The effects and mode of action of biochar on the degradation of methyl isothiocyanate in soil. Science of the Total Environment, 565, 339–345. https://doi.org/10.1016/j.scitotenv.2016.04.166

Fonseca, A. A. D.; Santos, D. A.; Moura-Junior, C. D.; Passos, R. R.; Rangel, O. J. P. (2021). Phosphorus and Potassium in Aggregates of Degraded Soils: Changes Caused by Biochar Application. Clean - Soil, Air, Water, 49(12), 2000366. https://doi.org/10.1002/clen.202000366

Forján, R.; Rodríguez-Vila, A.; Cerqueira, B.; Covelo, E. F.; Marcet, P.; Asensio, V. (2018). Comparative effect of compost and technosol enhanced with biochar on the fertility of a degraded soil. Environmental Monitoring and Assessment, 190(10), 1-12. https://doi.org/10.1007/s10661-018-6997-4

Glaser, B.; Birk, J. J. (2012). State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochimica et Cosmochimica Acta, 82, 39-51. https://doi.org/10.1016/j.gca.2010.11.029

Han, Z.; Xu, P.; Li, Z.; Lin, H.; Zhu, C.; Wang, J.; Zou, J. (2022). Microbial diversity and the abundance of keystone species drive the response of soil multifunctionality to organic substitution and biochar amendment in a tea plantation. GCB Bioenergy, 14(4), 481–495. https://doi.org/10.1111/gcbb.12926

Hansen, V.; Müller-Stöver, D.; Munkholm, L. J.; Peltre, C.; Hauggaard-Nielsen, H.; Jensen, L. S. (2016). The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: An incubation study. Geoderma, 269, 99–107. https://doi.org/10.1016/j.geoderma.2016.01.033

Horák, J.; Kotuš, T.; Toková, L.; Aydin, E.; Igaz, D.; Šimanský, V. (2021). A sustainable approach for improving soil properties and reducing N2O emissions is possible through initial and repeated biochar application. Agronomy, 11(3), 582. https://doi.org/10.3390/agronomy11030582

Huang, S.; Bao, J.; Shan, M.; Qin, H.; Wang, H.; Yu, X.; Chen, J.; Xu, Q. (2018). Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content. Chemosphere, 211, 120–127. https://doi.org/10.1016/j.chemosphere.2018.07.133

Jegajeevagan, K.; Mabilde, L.; Gebremikael, M. T.; Ameloot, N.; De Neve, S.; Leinweber, P.; Sleutel, S. (2016). Artisanal and controlled pyrolysis-based biochars differ in biochemical composition, thermal recalcitrance, and biodegradability in soil. Biomass and Bioenergy, 84, 1–11. https://doi.org/10.1016/j.biombioe.2015.10.025

Ji, X.; Wan, J.; Wang, X.; Peng, C.; Wang, G.; Liang, W.; Zhang, W. (2022). Mixed bacteria-loaded biochar for the immobilization of arsenic, lead, and cadmium in a polluted soil system: effects and mechanisms. Science of The Total Environment, 811, 152112. https://doi.org/10.1016/j.scitotenv.2021.152112

Jiang, Y.; Kang, Y.; Han, C.; Zhu; Deng, H.; Xie, Z.; Zhong, W. (2020). Biochar amendment in reductive soil disinfestation process improved remediation effect and reduced N2O emission in a nitrate-riched degraded soil. Archives of Agronomy and Soil Science, 66(7), 983–991. https://doi.org/10.1080/03650340.2019.1650171

Jien, S. H.; Chiang, J. L.; Wang, C. S.; Chang, H. J. (2012). Effects of application of biochar on soil fertility of acid red soils. Journal of Taiwan Agricultural Engineering, 58(4), 15–22.

Jien, S. H.; Kuo, Y. L.; Liao, C. S.; Wu, Y. T.; Igalavithana, A. D.; Tsang, D. C. W.; Ok, Y. S. (2021). Effects of field scale in situ biochar incorporation on soil environment in a tropical highly weathered soil. Environmental Pollution, 272, 116009. https://doi.org/10.1016/j.envpol.2020.116009

Jun, W.; Yu, S.; Ziyuan, L.; Cheng, H.; Zubin, X.; Wenhui, Z. (2016). Effects of biochar application on N2O emission in degraded vegetable soil and in remediation process of the soil. Acta Pedologica Sinica, 53(3), 713–723. https://doi.org/10.11766/trxb201509170443

Jyoti, B. M.; Bordoloi, S.; Kumar, H.; Gogoi, N.; Zhu, H. H.; Sarmah, A. K.; Sreeja, P.; Sreedeep, S.; Mei, G. (2021). Influence of biochar from animal and plant origin on the compressive strength characteristics of degraded landfill surface soils. International Journal of Damage Mechanics, 30(4), 484–501. https://doi.org/10.1177/1056789520925524

Karim, A. A.; Kumar, M.; Mohapatra, S.; Singh, S.; K. (2019). Nutrient rich biomass and effluent sludge wastes co-utilization for production of biochar fertilizer through different thermal treatments. Journal of Cleaner Production, 228, 570–579. https://doi.org/10.1016/j.jclepro.2019.04.330

Karim, M. R.; Halim, M. A.; Gale, N. V.; Thomas, S. C. (2020). Biochar effects on soil physiochemical properties in degraded managed ecosystems in northeastern Bangladesh. Soil Systems, 4(4), 1–17. https://doi.org/10.3390/soilsystems4040069

Kebede, B.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Mulualem, T.; Mamedov, A. I.; Meshesha, D. T.; Adgo, E.; Fenta, A. A.; Ebabu, K.; Masunaga, T. (2022). Effect of Polyacrylamide integrated with other soil amendments on runoff and soil loss: Case study from northwest Ethiopia. International Soil and Water Conservation Research, 10(3), 487-496. https://doi.org/10.1016/j.iswcr.2021.12.001

Khan, A. Z.; Ding, X.; Khan, S.; Ayaz, T.; Fidel, R.; Khan, M. A. (2020). Biochar efficacy for reducing heavy metals uptake by Cilantro (Coriandrum sativum) and spinach (Spinaccia oleracea) to minimize human health risk. Chemosphere, 244, 125543. https://doi.org/10.1016/j.chemosphere.2019.125543

Khan, A. Z.; Khan, S.; Khan, M. A.; Alam, M.; Ayaz, T. (2020). Biochar reduced the uptake of toxic heavy metals and their associated health risk via rice (Oryza sativa L.) grown in Cr-Mn mine contaminated soils. Environmental Technology and Innovation, 17, 100590. https://doi.org/10.1016/j.eti.2019.100590

Khan, M. A.; Ding, X.; Khan, S.; Brusseau, M. L.; Khan, A.; Nawab, J. (2018). The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Science of the Total Environment, 636, 810–817. https://doi.org/10.1016/j.scitotenv.2018.04.299

Lahori, A. H.; Mierzwa-Hersztek, M.; Demiraj, E.; Idir, R.; Bui, T. T. X.; Vu, D. D.; Channa, A.; Samoon, N. A.; Zhang, Z. (2020). Clays, limestone and biochar affect the bioavailability and geochemical fractions of cadmium and zinc from zn-smelter polluted soils. Sustainability, 12(20), 1–16. https://doi.org/10.3390/su12208606

Laird, D. A.; Novak, J. M.; Collins, H. P.; Ippolito, J. A.; Karlen, D. L.; Lentz, R. D.; Sistani, K. R.; Spokas, K.; Van Pelt, R. S. (2017). Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma, 289, 46–53. https://doi.org/10.1016/j.geoderma.2016.11.025

Lauricella, D.; Butterly, C. R.; Clark, G. J.; Sale, P. G.; Li, G.; Tang, C. (2020). Effectiveness of innovative organic amendments in acid soils depends on their ability to supply P and alleviate Al and Mn toxicity in plants. Journal of Soils and Sediments. 20(11), 3951–3962. https://doi.org/10.1007/s11368-020-02721-0

Lee, H. S.; Kim, Y.; Kim, J.; Shin, H. S. (2022). Quantitative and qualitative characteristics of dissolved organic matter derived from biochar depending on the modification method and biochar type. Journal of Water Process Engineering, 46, 102569. https://doi.org/10.1016/j.jwpe.2022.102569

Li, J.; Shao, X.; Huang, D.; Shang, J.; Liu, K.; Zhang, Q.; Yang, X.; Li, H.; He, Y. (2020). The addition of organic carbon and nitrogen accelerates the restoration of soil system of degraded alpine grassland in Qinghai-Tibet Plateau. Ecological Engineering. 158, 106084. https://doi.org/10.1016/j.ecoleng.2020.106084

Li, Y.; You, S. (2022). Biochar soil application: soil improvement and pollution remediation. In: Tsang, Daniel C.W.; Ok Yong S. (eds). Agriculture for Achieving Sustainable Development Goals. Ed. Academic Press. p. 97-102. https://doi.org/10.1016/B978-0-323-85343-9.00004-5

Liang, X.; Chen, L.; Liu, Z.; Jin, Y.; He, M.; Zhao, Z.; Liu, C.; Niyungeko, C.; Arai, Y. (2018). Composition of microbial community in pig manure biochar-amended soils and the linkage to the heavy metals accumulation in rice at harvest. Land Degradation and Development, 29(7), 2189–2198. https://doi.org/10.1002/ldr.2851

Lin, Z.; Liu, Q.; Liu, G.; Cowie, A. L.; Bei, Q.; Liu, B.; Wang, X.; Ma, J.; Zhu, J.; Xie, Z. (2017). Effects of Different Biochars on Pinus elliottii Growth, N Use Efficiency, Soil N2O and CH4 Emissions and C Storage in a Subtropical Area of China. Pedosphere, 27(2), 248–261. https://doi.org/10.1016/S1002-0160(17)60314-X

Liu, B.; Cai, Z.; Zhang, Y.; Liu, G.; Luo, X.; Zheng, H. (2019). Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land. Chemosphere, 224, 151–161. https://doi.org/10.1016/j.chemosphere.2019.02.100

Liu, Y.; Chen, Y.; Wang, Y.; Lu, H.; He, L.; Yang, S. (2018). Negative priming effect of three kinds of biochar on the mineralization of native soil organic carbon. Land Degradation and Development, 29(11), 3985–3994. https://doi.org/10.1002/ldr.3147

Luo, S.; He, B.; Song, D.; Li, T.; Wu, Y.; Yang, L. (2020). Response of bacterial community structure to different biochar addition dosages in karst yellow soil planted with Ryegrass and Daylily. Sustainability, 12(5), 2124 https://doi.org/10.3390/su12052124

Luo, X.; Chen, L.; Zheng, H.; Chang, J.; Wang, H.; Wang, Z.; Xing, B. (2016). Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma, 282, 120–128. https://doi.org/10.1016/j.geoderma.2016.07.015

Luo, X.; Wang, Z.; Meki, K.; Wang, X.; Liu, B.; Zheng, H.; You, X.; Li, F. (2019). Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. Journal of Soils and Sediments, 19(12), 3934–3944. https://doi.org/10.1007/s11368-019-02365-9

Madrid, D. E. M.; Marrugo-Negrete, J. L. (2021). Effects of adding amendments on the immobilization of heavy metals in mining soils of southern Bolívar. Ciencia Tecnología Agropecuaria, 22(2), e2272. https://doi.org/10.21930/RCTA.VOL22_NUM2_ART:2272

Manna, S.; Singh, N. (2019). Biochars mediated degradation, leaching and bioavailability of pyrazosulfuron-ethyl in a sandy loam soil. Geoderma, 334, 63–71. https://doi.org/10.1016/j.geoderma.2018.07.032

Marchal, G.; Smith, K. E. C.; Rein, A.; Winding, A.; Trapp, S.; Karlson, U. G. (2013). Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost. Chemosphere, 90(6), 1767–1778. https://doi.org/10.1016/j.chemosphere.2012.07.048

Mohawesh, O.; Coolong, T.; Aliedeh, M.; Qaraleh, S. (2018). Greenhouse evaluation of biochar to enhance soil properties and plant growth performance under arid environment. Bulgarian Journal of Agricultural Science, 24(6), 1012–1019.

Nanda, S.; Mohanty, P.; Pant, K. K.; Naik, S.; Kozinski, J. A.; Dalai, A. K. (2013). Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. Bioenergy Research, 6(2), 663–677. https://doi.org/10.1007/s12155-012-9281-4

Nawab, J.; Khan, N.; Ahmed, R.; Khan, S.; Ghani, J.; Rahman, Z.; Khan, F.; Wang, X.; Muhammad, J.; Sher, H. (2019). Influence of different organic geo-sorbents on Spinacia oleracea grown in chromite mine-degraded soil: a greenhouse study. Journal of Soils and Sediments, 19(5), 2417–2432. https://doi.org/10.1007/s11368-019-02260-3

Negiş, H.; Şeker, C.; Gümüş, I.; Manirakiza, N.; Mücevher, O. (2020). Effects of Biochar and Compost Applications on Penetration Resistance and Physical Quality of a Sandy Clay Loam Soil. Communications in Soil Science and Plant Analysis, 51(1), 38–44. https://doi.org/10.1080/00103624.2019.1695819

Nguyen, B. T.; Le, L. B.; Pham, L. P.; Nguyen, H. T.; Tran, T. D.; Van Thai, N. (2021). The effects of biochar on the biomass yield of elephant grass (Pennisetum Purpureum Schumach) and properties of acidic soils. Industrial Crops and Products, 161, 113224. https://doi.org/10.1016/j.indcrop.2020.113224

Ni, N.; Wang, F.; Song, Y.; Bian, Y.; Shi, R.; Yang, X.; Gu, C.; Jiang, X. (2018). Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: Degradation stimulation vs immobilization. Chemosphere, 196, 288–296. https://doi.org/10.1016/j.chemosphere.2017.12.192

Palakit, K.; Duangsathaporn, K.; Lumyai, P.; Sangram, N.; Sikareepaisarn, P.; Khantawan, C. (2018). Efficiency of biochar and bio-fertilizers derived from maize debris as soil amendments. Environment and Natural Resources Journal, 16(2), 79–90. https://doi.org/10.14456/ennrj.2018.17

Qiang, M.; Gao, J.; Han, J.; Zhang, H.; Lin, T.; Long, S. (2020). How adding biochar improves loessal soil fertility and sunflower yield on consolidation project land on the chinese loess plateau. Polish Journal of Environmental Studies, 29(5), 3759–3769. https://doi.org/10.15244/pjoes/118204

Raul, C.; Bharti, V. S.; Dar Jaffer, Y.; Lenka, S.; Krishna, G. (2021). Sugarcane bagasse biochar: Suitable amendment for inland aquaculture soils. Aquaculture Research, 52(2), 643–654. https://doi.org/10.1111/are.14922

Rodríguez-Vila, A.; Forján, R.; Guedes, R. S.; Covelo, E. F. (2016). Changes on the Phytoavailability of Nutrients in a Mine Soil

Reclaimed with Compost and Biochar. Water, Air, and Soil Pollution, 227(12), 1-12. https://doi.org/10.1007/s11270-016-3155-x

Román-Dañobeytia, F.; Cabanillas, F.; Lefebvre, D.; Farfan, J.; Alferez, J.; Polo-Villanueva, F.; Llacsahuanga, J.; Vega, C. M.; Velasquez, M.; Corvera, R.; Fernandez, L. E.; Silman, M. R, (2021). Survival and early growth of 51 tropical tree species in areas degraded by artisanal gold mining in the Peruvian Amazon. Ecological Engineering, 159, 106097. https://doi.org/10.1016/j.ecoleng.2020.106097

Roy, R.; Núñez-Delgado, A.; Sultana, S.; Wang, J.; Munir, A.; Battaglia, M. L.; Sarker, T.; Seleiman, M. F.; Barmon, M.; Zhang, R. (2021). Additions of optimum water, spent mushroom compost and wood biochar to improve the growth performance of Althaea rosea in drought-prone coal-mined spoils. Journal of Environmental Management, 295, 113076. https://doi.org/10.1016/j.jenvman.2021.113076

Saleem, A. M.; Ribeiro, G. O. Jr.; Yang, W. Z.; Ran, T.; Beauchemin, K. A.; Mcgeough, E. J.; Ominski, K. H.; Okine, E. K.; Mcallister, T. A. (2018). Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet. Journal of animal science, 96(8), 3121–3130. https://doi.org/10.1093/jas/sky204

Schillem, S.; Schneider, B. U.; Zeihser, U.; Hüttl, R. F. (2019). Effect of N-modified lignite granulates and composted biochar on plant growth, nitrogen and water use efficiency of spring wheat. Archives of Agronomy and Soil Science. 65(13), 1913–1925. https://doi.org/10.1080/03650340.2019.1582767

Seitz, S.; Teuber, S.; Geißler, C.; Goebes, P.; Scholten, T. (2020). How do newly-amended biochar particles affect erodibility and soil water movement? —a small-scale experimental approach. Soil Systems, 4(4), 1–14. https://doi.org/10.3390/SOILSYSTEMS4040060

Singh, G.; Mavi, M. S.; Choudhary, O. P.; Gupta, N.; Singh, Y. (2021). Rice straw biochar application to soil irrigated with saline water in a cotton-wheat system improves crop performance and soil functionality in north-west India. Journal of Environmental Management, 295; 113277. https://doi.org/10.1016/j.jenvman.2021.113277

Situmeang, Y. P.; Adnyana, I. M.; Subadiyasa, I. N. N.; Merit, I. N. (2018). Effectiveness of Bamboo Biochar combined with compost and NPK fertilizer to improved soil quality and corn yield. International Journal on Advanced Science, Engineering and Information Technology, 8(5), 2241–2248. https://doi.org/10.18517/ijaseit.8.5.2179

Somerville, P. D.; Farrell, C.; May, P. B.; Livesley, S. J. (2019). Tree water use strategies and soil type determine growth responses to biochar and compost organic amendments. Soil and Tillage Research, 192, 12–21. https://doi.org/10.1016/j.still.2019.04.023

Song, X.; Li, H.; Song, J.; Chen, W.; Shi, L. (2022). Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiology and Biochemistry, 183, 96–110. https://doi.org/10.1016/j.plaphy.2022.05.008

Teutscherova, N.; Lojka, B.; Houška, J.; Masaguer, A.; Benito, M.; Vazquez, E. (2018). Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils. European Journal of Soil Biology, 88, 15–26. https://doi.org/10.1016/j.ejsobi.2018.06.002

Tran, C. V.; Pham, H. Q.; Dinh, T. V.; Nguyen, K. M. (2020). Influence of biochar amendments on surface charge and bioavailability of heavy metals in degraded soils. Suranaree Journal of Science and Technology, 27(4), 1–10.

Trippe, K. M.; Manning, V. A.; Reardon, C. L.; Klein, A. M.; Weidman, C.; Ducey, T. F.; Novak, J. M.; Watts, D. W.; Rushmiller, H.; Spokas, K. A.; Ippolito, J. A.; Johnson, M. G. (2021). Phytostabilization of acidic mine tailings with biochar, biosolids, lime, and locally-sourced microbial inoculum: Do amendment mixtures influence plant growth, tailing chemistry, and microbial composition? Applied Soil Ecology, 165, 103962. https://doi.org/10.1016/j.apsoil.2021.103962

Vu, Q. D.; De Neergaard, A.; Tran, T. D.; Hoang, Q. Q.; Ly, P.; Tran, T. M.; Jensen, L. S. (2015). Manure, biogas digestate and crop residue management affects methane gas emissions from rice paddy fields on Vietnamese smallholder livestock farms. Nutrient Cycling in Agroecosystems, 103(3), 329–346. https://doi.org/10.1007/s10705-015-9746-x

Wang, B.; Lee, X.; Theng, B. K.; Zhang, L.; Cheng, H.; Cheng, J.; Lyu, W. (2019). Biochar addition can reduce NOx gas emissions from a calcareous soil. Environmental Pollutants and Bioavailability, 31(1), 38-48. https://doi.org/10.1080/09542299.2018.1544035

Wei, M.; Liu, X.; He, Y.; Xu, X.; Wu, Z.; Yu, K.; Zheng, X. (2020). Biochar inoculated with Pseudomonas putida improves grape (Vitis vinifera L.) fruit quality and alters bacterial diversity. Rhizosphere, 16, 100261 https://doi.org/10.1016/j.rhisph.2020.100261

Wei, W.; Liu, S.; Cui, D.; Ding, X. (2021). Interaction between nitrogen fertilizer and biochar fertilization on crop yield and soil chemical quality in a temperate region. Journal of Agricultural Science, 159 (1–2), 106–115. https://doi.org/10.1017/S0021859621000277

Winders, T. M.; Jolly-Breithaupt, M. L.; Wilson, H. C.; Macdonald, J. C.; Erickson, G. E.; Watson, A. K. (2019). Evaluation of the effects of biochar on diet digestibility and methane production from growing and finishing steers. Translational Animal Science, 3(2), 775-783. https://doi.org/10.1093/tas/txz027

Wu, C.; Li, Y.; Chen, M.; Luo, X.; Chen, Y.; Belzile, N.; Huang, S. (2018). Adsorption of cadmium on degraded soils amended with maize-stalk-derived biochar. International Journal of Environmental Research and Public Health, 15(11), 2331. https://doi.org/10.3390/ijerph15112331

Yan, S.; Gao, Y.; Tian, M.; Tian, Y.; Li, J. (2021). Comprehensive evaluation of effects of various carbon-rich amendments on tomato production under continuous saline water irrigation: Overall soil quality, plant nutrient uptake, crop yields and fruit quality. Agricultural Water Management, 255, 106995. https://doi.org/10.1016/j.agwat.2021.106995

Yan, T.; Xue, J.; Zhou, Z.; Wu, Y. (2021). Biochar-based fertilizer amendments improve the soil microbial community structure in a karst mountainous area. Science of the Total Environment, 794, 148757. https://doi.org/10.1016/j.scitotenv.2021.148757

Yan, T.; Xue, J.; Zhou, Z.; Wu, Y. (2022). Biochar and compost amendments alter the structure of the soil fungal network in a karst mountainous area. Land Degradation and Development, 33(5), 685–697. https://doi.org/10.1002/ldr.4148

Yang, L.; Bian, X.; Yang, R.; Zhou, C.; Tang, B. (2018). Assessment of organic amendments for improving coastal saline soil. Land Degradation and Development, 29(9), 3204–3211. https://doi.org/10.1002/ldr.3027

Yin, S.; Zhang, X.; Suo, F.; You, X.; Yuan, Y.; Cheng, Y.; Zhang, C.; Li, Y. (2022). Effect of biochar and hydrochar from cow manure and reed straw on lettuce growth in an acidified soil. Chemosphere, 298, 134191. https://doi.org/10.1016/j.chemosphere.2022.134191

Yousaf, M. T. B.; Nawaz, M. F.; Rehman, M. Z. U.; Rasul, F.; Tanvir, M. A. (2021). Ecophysiological response of early stage Eucalyptus camaldulensis to biochar and other organic amendments under salt stress. Pakistan Journal of Agricultural Sciences, 58(3), 999–1006. https://doi.org/10.21162/PAKJAS/21.1012

Yousaf, M. T. B.; Nawaz, M. F.; Zia Ur Rehman, M.; Gul, S. L.; Yasin, G.; Rizwan, M.; Ali, S. (2021). Effect of three different types of biochars on eco-physiological response of important agroforestry tree species under salt stress. International Journal of Phytoremediation, 23(13), 1412–1422. https://doi.org/10.1080/15226514.2021.1901849

Zhang, Q.; Wan, G.; Zhou, C.; Luo, J.; Lin, J.; Zhao, X. (2020). Rehabilitation effect of the combined application of bamboo biochar and coal ash on ion-adsorption-type rare earth tailings. Journal of Soils and Sediments, 20(9), 3351–3357. https://doi.org/10.1007/s11368-020-02670-8

Zhao, C.; Zhang, Y.; Liu, X.; Ma, X.; Meng, Y.; Li, X.; Quan, X.; Shan, J.; Zhao, W.; Wang, H. (2020). Comparing the Effects of Biochar and Straw Amendment on Soil Carbon Pools and Bacterial Community Structure in Degraded Soil. Journal of Soil Science and Plant Nutrition, 20(2), 751–760. https://doi.org/10.1007/s42729-019-00162-4

Zhao, L.; Zhang, X.; Cheng, G.; Zhang, L.; Liu, X.; Li, H. (2017). Effects of biochar on microbial functional diversity of vegetable garden soil. Acta Ecologica Sinica, 37(14), 4754–4762. https://doi.org/10.5846/stxb201604220758

Zhaoxiang, W.; Huihu, L.; Qiaoli, L.; Changyan, Y.; Faxin, Y. (2020). Application of bio-organic fertilizer, not biochar, in degraded red soil improves soil nutrients and plant growth. Rhizosphere, 16, 100264. https://doi.org/10.1016/j.rhisph.2020.100264

Zhelezova, A.; Cederlund, H.; Stenström, J. (2017). Effect of Biochar Amendment and Ageing on Adsorption and Degradation of Two Herbicides. Water, Air, and Soil Pollution, 228, 216. https://doi.org/10.1007/s11270-017-3392-7