Biocarbón: Estado del arte, avances y perspectivas en el manejo del suelo

Biochar: State-of-the-art advances and perspectives for soil management

Contenido principal del artículo

Sonia Esperanza Aguirre Forero
Nelson
José

Resumen

El biocarbón generado a partir de la pirolisis de materiales orgánicos no solo reduce las emisiones de GEI, sino que impacta muchas otras propiedades físicas, químicas y biológicas del suelo.


El objetivo del presente artículo fue el de presentar una revisión sistemática de bases de datos en línea acerca del avance y tendencias de conocimiento existente sobre Biocarbón, tema significativo que contribuye a la actualización, síntesis y difusión de conocimientos y permite clasificar el flujo creciente de información e identificar aspectos acreditados de 2011 a 2022.


Durante el periodo, se recopilaron 253 artículos científicos y se seleccionaron 119; se trabajó redes de co-ocurrencia con información representada gráficamente para visualizar número total de conexiones entre entidades, agrupamiento (subdominios) y localizar sinónimos, entre otros. Uno de los criterios de selección fue tipo de publicación y la sinopsis del estudio del efecto del biocarbón en suelo, importancia ambiental y uso en el sector agrícola, así como los enfoques metodológicos del proceso de investigación y viabilidad de implementación.


Los resultados evidenciaron notable incremento de investigación en el tema en los últimos años, con reportes de efectividad, como acondicionador, remediador de suelos, mitigación de GEI y una tendencia para descontaminación de aguas y suelos con un positivo avance de nuevas investigaciones. No obstante, es necesario supervisar los efectos de su aplicación a mediano y largo plazo para originar procesos de producción más limpia en el sector agrícola

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Zia-Ur-Rehman, M; Qayyum M. F.; Ok, Y. S.; Murtaza, G. (2018). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research, 25(26), 25668–25680. https://doi.org/10.1007/s11356-017-8987-4

Abideen, Z.; Koyro, H. W.; Huchzermeyer, B.; Gul, B.; Khan, M. A. (2020). Impact of a biochar or a biochar-compost mixture on water relation, nutrient uptake and photosynthesis of Phragmites karka. Pedosphere, 30(4), 466–477. https://doi.org/10.1016/S1002-0160(17)60362-X

Adejumo, S. A.; Owoseni, O.; Mur, L. A. J. (2021). Low light intensity and compost modified biochar enhanced maize growth on contaminated soil and minimized Pb induced oxidative stress. Journal of Environmental Chemical Engineering, 9(2), 104764. https://doi.org/10.1016/j.jece.2020.104764

Adusu, D.; Abugre, S.; Dei-Kusi, D. (2021). Potential of biochar for minesoil amendment and floristic diversity enhancement at the yongwa quarry site in the eastern region of ghana. Agricultural Science Digest, 41(1), 61–65. https://doi.org/10.18805/ag.D-254

Agbede, T. M.; Adekiya, A. O. (2020). Influence of biochar on soil physicochemical properties, erosion potential, and maize (Zea mays L.) grain yield under sandy soil condition. Communications in Soil Science and Plant Analysis, 51(20), 2559-2568. https://doi.org/10.1080/00103624.2020.1845348

Agbede, T. M.; Oyewumi, A. (2022). Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resources, Environment and Sustainability, 7, 100051. https://doi.org/10.1016/j.resenv.2022.100051

Alcívar, M.; Zurita-Silva, A.; Sandoval, M.; Muñoz, C.; Schoebitz, M. (2018). Reclamation of saline-sodic soils with combined amendments: Impact on quinoa performance and biological soil quality. Sustainability, 10(9), 3083. https://doi.org/10.3390/su10093083

Ali, I.; Ullah, S.; He, L.; Zhao, Q.; Iqbal, A.; Wei, S.; Shah, T.; Ali, N.; Bo, Y.; Adnan, M.; Amanullah; Jiang, L. (2020). Combined application of biochar and nitrogen fertilizer improves rice yield, microbial activity and N-metabolism in a pot experiment. PeerJ, 8, e10311. https://doi.org/10.7717/peerj.10311

Ali, K.; Arif, M.; Jan, M. T.; Khan, M. J.; Jones, D. L. (2015). Integrated use of biochar: A tool for improving soil and wheat quality of degraded soil under wheat-maize cropping pattern. Pakistan Journal of Botany, 47(1), 233–240.

Andrés, P.; Rosell-Melé, A.; Colomer-Ventura, F.; Denef, K.; Cotrufo, M. F.; Riba, M.; Alcañiz, J. M. (2019). Belowground biota responses to maize biochar addition to the soil of a Mediterranean vineyard. Science of the total environment, 660, 1522-1532. https://doi.org/10.1016/j.scitotenv.2019.01.101

Are, K. S.; Adelana, A. O.; Fademi, I. O.; Aina, O. A. (2017). Improving physical properties of degraded soil: Potential of poultry manure and biochar. Agriculture and Natural Resources, 51(6), 454–462. https://doi.org/10.1016/j.anres.2018.03.009

Aziz, H.; Wang, X.; Murtaza, G.; Ashar, A.; Hussain, S.; Abid, M.; Murtaza, B.; Saleem, M. H.; Fiaz, S.; Ali, S. (2021). Evaluation of compost and biochar to mitigate chlorpyrifos pollution in soil and their effect on soil enzyme dynamics. Sustainability, 13(17), 9695. https://doi.org/10.3390/su13179695

Bai, X.; Fernandez, I. J.; Spencer, C. J. (2022). Chemical Response of Soils to Traditional and Industrial Byproduct Wood Biochars. Communications in Soil Science and Plant Analysis, 53(6), 737–751. https://doi.org/10.1080/00103624.2022.2028812

Bashagaluke, J. B.; Logah, V.; Opoku, A.; Tuffour, H. O.; Sarkodie-Addo, J.; Quansah, C. (2019). Soil loss and run-off characteristics under different soil amendments and cropping systems in the semi-deciduous forest zone of Ghana. Soil Use and Management, 35(4), 617–629. https://doi.org/10.1111/sum.12531

Bednik, M.; Medyńska-Juraszek, A.; Dudek, M.; Kloc, S.; Kręt, A.; Labaz, B.; Waroszewski, J. (2020). Wheat straw biochar and NPK fertilization efficiency in sandy soil reclamation. Agronomy, 10(4), 496. https://doi.org/10.3390/agronomy10040496

Bello, A.; Wang, B.; Zhao, Y.; Yang, W.; Ogundeji, A.; Deng, L.; Egbeagu, U. U.; Yu, S.; Zhao, L.; Li, D.; Li, D.; Xu, X. (2021). Composted biochar affects structural dynamics, function and co-occurrence network patterns of fungi community. Science of the Total Environment, 775:145672. https://doi.org/10.1016/j.scitotenv.2021.145672

Bu, X.; Xue, J.; Zhao, C.; Wu, Y.; Han, F. (2017). Nutrient leaching and retention in riparian soils as influenced by rice husk biochar addition. Soil Science, 182(7), 241–247. https://doi.org/10.1097/SS.0000000000000217

Chávez-Garcia, E.; Siebe, C. (2019). Rehabilitation of a highly saline-sodic soil using a rubble barrier and organic amendments. Soil and Tillage Research, 189, 176–188. https://doi.org/10.1016/j.still.2019.01.003

Chen, D.; Liu, W.; Wang, Y.; Lu, P. (2022). Effect of biochar aging on the adsorption and stabilization of Pb in soil. Journal of Soils and Sediments, 22(1), 56-66. https://doi.org/10.1007/s11368-021-03059-x

Cruz-Méndez, A. S.; Ortega-Ramírez, E.; Lucho-Constantino, C. A.; Arce-Cervantes, O.; Vázquez-Rodríguez, G. A.; Coronel-Olivares, C.; Beltrán-Hernández, I. (2021). Bamboo biochar and a nopal-based biofertilizer as improvers of alkaline soils with low buffer capacity. Applied Sciences, 11(14), 6502. https://doi.org/10.3390/app11146502

Cruz-O’byrne, R.; Casallas-Useche, C.; Piraneque-Gambasica, N.; Aguirre-Forero, S. (2021). Knowledge Landscape of Starter Cultures: A Bibliometric and Patentometric Study. Recent Patents on Biotechnology, 15(3), 232–246. https://doi.org/10.2174/1872208315666210928115503

Cui, Q.; Xia, J.; Peng, L.; Zhao, X.; Qu, F. (2022). Positive Effects on Alfalfa Productivity and Soil Nutrient Status in Coastal Wetlands Driven by Biochar and Microorganisms Mixtures. Frontiers in Ecology and Evolution, 9, 798520. https://doi.org/10.3389/fevo.2021.798520

De la Rosa, J. M.; Santa‐Olalla, A.; Campos, P.; López‐Núñez, R.; González‐Pérez; J. A.; Almendros, G.; Knicker, H. E.; Sánchez‐Martín, Á.; Fernández‐Boy, E. (2022). Impact of Biochar Amendment on Soil Properties and Organic Matter Composition in Trace Element‐Contaminated Soil. International Journal of Environmental Research and Public Health, 19(4), 2140. https://doi.org/10.3390/ijerph19042140

Delaye, L. A. M.; Ullé, J. Á.; Andriulo, A. E. (2020). Biochar application in a degraded soil under sweet-potato production. Effect on edaphic properties. Ciencia del Suelo, 38(1), 162–173.

Dong, X.; Zhang, Z.; Wang, S.; Shen, Z.; Cheng, X.; Lv, X.; Pu, X. (2022). Soil properties, root morphology and physiological responses to cotton stalk biochar addition in two continuous cropping cotton field soils from Xinjiang, China. PeerJ, 10, e12928. https://doi.org/10.7717/peerj.12928

Espinosa, N. J.; Moore, D. J. P.; Rasmussen, C.; Fehmi, J. S.; Gallery, R. E. (2020). Woodchip and biochar amendments differentially influence microbial responses, but do not enhance plant recovery in disturbed semiarid soils. Restoration

Ecology, 28, S381–S392. https://doi.org/10.1111/rec.13165

Fang, B.; Lee, X.; Zhang, J.; Li, Y.; Zhang, L.; Cheng, J.; Wang, B.; Cheng, H. (2016). Impacts of straw biochar additions on agricultural soil quality and greenhouse gas fluxes in karst area, Southwest China. Soil Science and Plant Nutrition, 62(5–6), 526–533. https://doi.org/10.1080/00380768.2016.1202734

Fang, W.; Wang, Q.; Han, D.; Liu, P.; Huang, B.; Yan, D.; Ouyang, C.; Li, Y.; Cao, A. (2016). The effects and mode of action of biochar on the degradation of methyl isothiocyanate in soil. Science of the Total Environment, 565, 339–345. https://doi.org/10.1016/j.scitotenv.2016.04.166

Fonseca, A. A. D.; Santos, D. A.; Moura-Junior, C. D.; Passos, R. R.; Rangel, O. J. P. (2021). Phosphorus and Potassium in Aggregates of Degraded Soils: Changes Caused by Biochar Application. Clean - Soil, Air, Water, 49(12), 2000366. https://doi.org/10.1002/clen.202000366

Forján, R.; Rodríguez-Vila, A.; Cerqueira, B.; Covelo, E. F.; Marcet, P.; Asensio, V. (2018). Comparative effect of compost and technosol enhanced with biochar on the fertility of a degraded soil. Environmental Monitoring and Assessment, 190(10), 1-12. https://doi.org/10.1007/s10661-018-6997-4

Glaser, B.; Birk, J. J. (2012). State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochimica et Cosmochimica Acta, 82, 39-51. https://doi.org/10.1016/j.gca.2010.11.029

Han, Z.; Xu, P.; Li, Z.; Lin, H.; Zhu, C.; Wang, J.; Zou, J. (2022). Microbial diversity and the abundance of keystone species drive the response of soil multifunctionality to organic substitution and biochar amendment in a tea plantation. GCB Bioenergy, 14(4), 481–495. https://doi.org/10.1111/gcbb.12926

Hansen, V.; Müller-Stöver, D.; Munkholm, L. J.; Peltre, C.; Hauggaard-Nielsen, H.; Jensen, L. S. (2016). The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: An incubation study. Geoderma, 269, 99–107. https://doi.org/10.1016/j.geoderma.2016.01.033

Horák, J.; Kotuš, T.; Toková, L.; Aydin, E.; Igaz, D.; Šimanský, V. (2021). A sustainable approach for improving soil properties and reducing N2O emissions is possible through initial and repeated biochar application. Agronomy, 11(3), 582. https://doi.org/10.3390/agronomy11030582

Huang, S.; Bao, J.; Shan, M.; Qin, H.; Wang, H.; Yu, X.; Chen, J.; Xu, Q. (2018). Dynamic changes of polychlorinated biphenyls (PCBs) degradation and adsorption to biochar as affected by soil organic carbon content. Chemosphere, 211, 120–127. https://doi.org/10.1016/j.chemosphere.2018.07.133

Jegajeevagan, K.; Mabilde, L.; Gebremikael, M. T.; Ameloot, N.; De Neve, S.; Leinweber, P.; Sleutel, S. (2016). Artisanal and controlled pyrolysis-based biochars differ in biochemical composition, thermal recalcitrance, and biodegradability in soil. Biomass and Bioenergy, 84, 1–11. https://doi.org/10.1016/j.biombioe.2015.10.025

Ji, X.; Wan, J.; Wang, X.; Peng, C.; Wang, G.; Liang, W.; Zhang, W. (2022). Mixed bacteria-loaded biochar for the immobilization of arsenic, lead, and cadmium in a polluted soil system: effects and mechanisms. Science of The Total Environment, 811, 152112. https://doi.org/10.1016/j.scitotenv.2021.152112

Jiang, Y.; Kang, Y.; Han, C.; Zhu; Deng, H.; Xie, Z.; Zhong, W. (2020). Biochar amendment in reductive soil disinfestation process improved remediation effect and reduced N2O emission in a nitrate-riched degraded soil. Archives of Agronomy and Soil Science, 66(7), 983–991. https://doi.org/10.1080/03650340.2019.1650171

Jien, S. H.; Chiang, J. L.; Wang, C. S.; Chang, H. J. (2012). Effects of application of biochar on soil fertility of acid red soils. Journal of Taiwan Agricultural Engineering, 58(4), 15–22.

Jien, S. H.; Kuo, Y. L.; Liao, C. S.; Wu, Y. T.; Igalavithana, A. D.; Tsang, D. C. W.; Ok, Y. S. (2021). Effects of field scale in situ biochar incorporation on soil environment in a tropical highly weathered soil. Environmental Pollution, 272, 116009. https://doi.org/10.1016/j.envpol.2020.116009

Jun, W.; Yu, S.; Ziyuan, L.; Cheng, H.; Zubin, X.; Wenhui, Z. (2016). Effects of biochar application on N2O emission in degraded vegetable soil and in remediation process of the soil. Acta Pedologica Sinica, 53(3), 713–723. https://doi.org/10.11766/trxb201509170443

Jyoti, B. M.; Bordoloi, S.; Kumar, H.; Gogoi, N.; Zhu, H. H.; Sarmah, A. K.; Sreeja, P.; Sreedeep, S.; Mei, G. (2021). Influence of biochar from animal and plant origin on the compressive strength characteristics of degraded landfill surface soils. International Journal of Damage Mechanics, 30(4), 484–501. https://doi.org/10.1177/1056789520925524

Karim, A. A.; Kumar, M.; Mohapatra, S.; Singh, S.; K. (2019). Nutrient rich biomass and effluent sludge wastes co-utilization for production of biochar fertilizer through different thermal treatments. Journal of Cleaner Production, 228, 570–579. https://doi.org/10.1016/j.jclepro.2019.04.330

Karim, M. R.; Halim, M. A.; Gale, N. V.; Thomas, S. C. (2020). Biochar effects on soil physiochemical properties in degraded managed ecosystems in northeastern Bangladesh. Soil Systems, 4(4), 1–17. https://doi.org/10.3390/soilsystems4040069

Kebede, B.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Mulualem, T.; Mamedov, A. I.; Meshesha, D. T.; Adgo, E.; Fenta, A. A.; Ebabu, K.; Masunaga, T. (2022). Effect of Polyacrylamide integrated with other soil amendments on runoff and soil loss: Case study from northwest Ethiopia. International Soil and Water Conservation Research, 10(3), 487-496. https://doi.org/10.1016/j.iswcr.2021.12.001

Khan, A. Z.; Ding, X.; Khan, S.; Ayaz, T.; Fidel, R.; Khan, M. A. (2020). Biochar efficacy for reducing heavy metals uptake by Cilantro (Coriandrum sativum) and spinach (Spinaccia oleracea) to minimize human health risk. Chemosphere, 244, 125543. https://doi.org/10.1016/j.chemosphere.2019.125543

Khan, A. Z.; Khan, S.; Khan, M. A.; Alam, M.; Ayaz, T. (2020). Biochar reduced the uptake of toxic heavy metals and their associated health risk via rice (Oryza sativa L.) grown in Cr-Mn mine contaminated soils. Environmental Technology and Innovation, 17, 100590. https://doi.org/10.1016/j.eti.2019.100590

Khan, M. A.; Ding, X.; Khan, S.; Brusseau, M. L.; Khan, A.; Nawab, J. (2018). The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Science of the Total Environment, 636, 810–817. https://doi.org/10.1016/j.scitotenv.2018.04.299

Lahori, A. H.; Mierzwa-Hersztek, M.; Demiraj, E.; Idir, R.; Bui, T. T. X.; Vu, D. D.; Channa, A.; Samoon, N. A.; Zhang, Z. (2020). Clays, limestone and biochar affect the bioavailability and geochemical fractions of cadmium and zinc from zn-smelter polluted soils. Sustainability, 12(20), 1–16. https://doi.org/10.3390/su12208606

Laird, D. A.; Novak, J. M.; Collins, H. P.; Ippolito, J. A.; Karlen, D. L.; Lentz, R. D.; Sistani, K. R.; Spokas, K.; Van Pelt, R. S. (2017). Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma, 289, 46–53. https://doi.org/10.1016/j.geoderma.2016.11.025

Lauricella, D.; Butterly, C. R.; Clark, G. J.; Sale, P. G.; Li, G.; Tang, C. (2020). Effectiveness of innovative organic amendments in acid soils depends on their ability to supply P and alleviate Al and Mn toxicity in plants. Journal of Soils and Sediments. 20(11), 3951–3962. https://doi.org/10.1007/s11368-020-02721-0

Lee, H. S.; Kim, Y.; Kim, J.; Shin, H. S. (2022). Quantitative and qualitative characteristics of dissolved organic matter derived from biochar depending on the modification method and biochar type. Journal of Water Process Engineering, 46, 102569. https://doi.org/10.1016/j.jwpe.2022.102569

Li, J.; Shao, X.; Huang, D.; Shang, J.; Liu, K.; Zhang, Q.; Yang, X.; Li, H.; He, Y. (2020). The addition of organic carbon and nitrogen accelerates the restoration of soil system of degraded alpine grassland in Qinghai-Tibet Plateau. Ecological Engineering. 158, 106084. https://doi.org/10.1016/j.ecoleng.2020.106084

Li, Y.; You, S. (2022). Biochar soil application: soil improvement and pollution remediation. In: Tsang, Daniel C.W.; Ok Yong S. (eds). Agriculture for Achieving Sustainable Development Goals. Ed. Academic Press. p. 97-102. https://doi.org/10.1016/B978-0-323-85343-9.00004-5

Liang, X.; Chen, L.; Liu, Z.; Jin, Y.; He, M.; Zhao, Z.; Liu, C.; Niyungeko, C.; Arai, Y. (2018). Composition of microbial community in pig manure biochar-amended soils and the linkage to the heavy metals accumulation in rice at harvest. Land Degradation and Development, 29(7), 2189–2198. https://doi.org/10.1002/ldr.2851

Lin, Z.; Liu, Q.; Liu, G.; Cowie, A. L.; Bei, Q.; Liu, B.; Wang, X.; Ma, J.; Zhu, J.; Xie, Z. (2017). Effects of Different Biochars on Pinus elliottii Growth, N Use Efficiency, Soil N2O and CH4 Emissions and C Storage in a Subtropical Area of China. Pedosphere, 27(2), 248–261. https://doi.org/10.1016/S1002-0160(17)60314-X

Liu, B.; Cai, Z.; Zhang, Y.; Liu, G.; Luo, X.; Zheng, H. (2019). Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land. Chemosphere, 224, 151–161. https://doi.org/10.1016/j.chemosphere.2019.02.100

Liu, Y.; Chen, Y.; Wang, Y.; Lu, H.; He, L.; Yang, S. (2018). Negative priming effect of three kinds of biochar on the mineralization of native soil organic carbon. Land Degradation and Development, 29(11), 3985–3994. https://doi.org/10.1002/ldr.3147

Luo, S.; He, B.; Song, D.; Li, T.; Wu, Y.; Yang, L. (2020). Response of bacterial community structure to different biochar addition dosages in karst yellow soil planted with Ryegrass and Daylily. Sustainability, 12(5), 2124 https://doi.org/10.3390/su12052124

Luo, X.; Chen, L.; Zheng, H.; Chang, J.; Wang, H.; Wang, Z.; Xing, B. (2016). Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma, 282, 120–128. https://doi.org/10.1016/j.geoderma.2016.07.015

Luo, X.; Wang, Z.; Meki, K.; Wang, X.; Liu, B.; Zheng, H.; You, X.; Li, F. (2019). Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. Journal of Soils and Sediments, 19(12), 3934–3944. https://doi.org/10.1007/s11368-019-02365-9

Madrid, D. E. M.; Marrugo-Negrete, J. L. (2021). Effects of adding amendments on the immobilization of heavy metals in mining soils of southern Bolívar. Ciencia Tecnología Agropecuaria, 22(2), e2272. https://doi.org/10.21930/RCTA.VOL22_NUM2_ART:2272

Manna, S.; Singh, N. (2019). Biochars mediated degradation, leaching and bioavailability of pyrazosulfuron-ethyl in a sandy loam soil. Geoderma, 334, 63–71. https://doi.org/10.1016/j.geoderma.2018.07.032

Marchal, G.; Smith, K. E. C.; Rein, A.; Winding, A.; Trapp, S.; Karlson, U. G. (2013). Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost. Chemosphere, 90(6), 1767–1778. https://doi.org/10.1016/j.chemosphere.2012.07.048

Mohawesh, O.; Coolong, T.; Aliedeh, M.; Qaraleh, S. (2018). Greenhouse evaluation of biochar to enhance soil properties and plant growth performance under arid environment. Bulgarian Journal of Agricultural Science, 24(6), 1012–1019.

Nanda, S.; Mohanty, P.; Pant, K. K.; Naik, S.; Kozinski, J. A.; Dalai, A. K. (2013). Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. Bioenergy Research, 6(2), 663–677. https://doi.org/10.1007/s12155-012-9281-4

Nawab, J.; Khan, N.; Ahmed, R.; Khan, S.; Ghani, J.; Rahman, Z.; Khan, F.; Wang, X.; Muhammad, J.; Sher, H. (2019). Influence of different organic geo-sorbents on Spinacia oleracea grown in chromite mine-degraded soil: a greenhouse study. Journal of Soils and Sediments, 19(5), 2417–2432. https://doi.org/10.1007/s11368-019-02260-3

Negiş, H.; Şeker, C.; Gümüş, I.; Manirakiza, N.; Mücevher, O. (2020). Effects of Biochar and Compost Applications on Penetration Resistance and Physical Quality of a Sandy Clay Loam Soil. Communications in Soil Science and Plant Analysis, 51(1), 38–44. https://doi.org/10.1080/00103624.2019.1695819

Nguyen, B. T.; Le, L. B.; Pham, L. P.; Nguyen, H. T.; Tran, T. D.; Van Thai, N. (2021). The effects of biochar on the biomass yield of elephant grass (Pennisetum Purpureum Schumach) and properties of acidic soils. Industrial Crops and Products, 161, 113224. https://doi.org/10.1016/j.indcrop.2020.113224

Ni, N.; Wang, F.; Song, Y.; Bian, Y.; Shi, R.; Yang, X.; Gu, C.; Jiang, X. (2018). Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: Degradation stimulation vs immobilization. Chemosphere, 196, 288–296. https://doi.org/10.1016/j.chemosphere.2017.12.192

Palakit, K.; Duangsathaporn, K.; Lumyai, P.; Sangram, N.; Sikareepaisarn, P.; Khantawan, C. (2018). Efficiency of biochar and bio-fertilizers derived from maize debris as soil amendments. Environment and Natural Resources Journal, 16(2), 79–90. https://doi.org/10.14456/ennrj.2018.17

Qiang, M.; Gao, J.; Han, J.; Zhang, H.; Lin, T.; Long, S. (2020). How adding biochar improves loessal soil fertility and sunflower yield on consolidation project land on the chinese loess plateau. Polish Journal of Environmental Studies, 29(5), 3759–3769. https://doi.org/10.15244/pjoes/118204

Raul, C.; Bharti, V. S.; Dar Jaffer, Y.; Lenka, S.; Krishna, G. (2021). Sugarcane bagasse biochar: Suitable amendment for inland aquaculture soils. Aquaculture Research, 52(2), 643–654. https://doi.org/10.1111/are.14922

Rodríguez-Vila, A.; Forján, R.; Guedes, R. S.; Covelo, E. F. (2016). Changes on the Phytoavailability of Nutrients in a Mine Soil

Reclaimed with Compost and Biochar. Water, Air, and Soil Pollution, 227(12), 1-12. https://doi.org/10.1007/s11270-016-3155-x

Román-Dañobeytia, F.; Cabanillas, F.; Lefebvre, D.; Farfan, J.; Alferez, J.; Polo-Villanueva, F.; Llacsahuanga, J.; Vega, C. M.; Velasquez, M.; Corvera, R.; Fernandez, L. E.; Silman, M. R, (2021). Survival and early growth of 51 tropical tree species in areas degraded by artisanal gold mining in the Peruvian Amazon. Ecological Engineering, 159, 106097. https://doi.org/10.1016/j.ecoleng.2020.106097

Roy, R.; Núñez-Delgado, A.; Sultana, S.; Wang, J.; Munir, A.; Battaglia, M. L.; Sarker, T.; Seleiman, M. F.; Barmon, M.; Zhang, R. (2021). Additions of optimum water, spent mushroom compost and wood biochar to improve the growth performance of Althaea rosea in drought-prone coal-mined spoils. Journal of Environmental Management, 295, 113076. https://doi.org/10.1016/j.jenvman.2021.113076

Saleem, A. M.; Ribeiro, G. O. Jr.; Yang, W. Z.; Ran, T.; Beauchemin, K. A.; Mcgeough, E. J.; Ominski, K. H.; Okine, E. K.; Mcallister, T. A. (2018). Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet. Journal of animal science, 96(8), 3121–3130. https://doi.org/10.1093/jas/sky204

Schillem, S.; Schneider, B. U.; Zeihser, U.; Hüttl, R. F. (2019). Effect of N-modified lignite granulates and composted biochar on plant growth, nitrogen and water use efficiency of spring wheat. Archives of Agronomy and Soil Science. 65(13), 1913–1925. https://doi.org/10.1080/03650340.2019.1582767

Seitz, S.; Teuber, S.; Geißler, C.; Goebes, P.; Scholten, T. (2020). How do newly-amended biochar particles affect erodibility and soil water movement? —a small-scale experimental approach. Soil Systems, 4(4), 1–14. https://doi.org/10.3390/SOILSYSTEMS4040060

Singh, G.; Mavi, M. S.; Choudhary, O. P.; Gupta, N.; Singh, Y. (2021). Rice straw biochar application to soil irrigated with saline water in a cotton-wheat system improves crop performance and soil functionality in north-west India. Journal of Environmental Management, 295; 113277. https://doi.org/10.1016/j.jenvman.2021.113277

Situmeang, Y. P.; Adnyana, I. M.; Subadiyasa, I. N. N.; Merit, I. N. (2018). Effectiveness of Bamboo Biochar combined with compost and NPK fertilizer to improved soil quality and corn yield. International Journal on Advanced Science, Engineering and Information Technology, 8(5), 2241–2248. https://doi.org/10.18517/ijaseit.8.5.2179

Somerville, P. D.; Farrell, C.; May, P. B.; Livesley, S. J. (2019). Tree water use strategies and soil type determine growth responses to biochar and compost organic amendments. Soil and Tillage Research, 192, 12–21. https://doi.org/10.1016/j.still.2019.04.023

Song, X.; Li, H.; Song, J.; Chen, W.; Shi, L. (2022). Biochar/vermicompost promotes Hybrid Pennisetum plant growth and soil enzyme activity in saline soils. Plant Physiology and Biochemistry, 183, 96–110. https://doi.org/10.1016/j.plaphy.2022.05.008

Teutscherova, N.; Lojka, B.; Houška, J.; Masaguer, A.; Benito, M.; Vazquez, E. (2018). Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils. European Journal of Soil Biology, 88, 15–26. https://doi.org/10.1016/j.ejsobi.2018.06.002

Tran, C. V.; Pham, H. Q.; Dinh, T. V.; Nguyen, K. M. (2020). Influence of biochar amendments on surface charge and bioavailability of heavy metals in degraded soils. Suranaree Journal of Science and Technology, 27(4), 1–10.

Trippe, K. M.; Manning, V. A.; Reardon, C. L.; Klein, A. M.; Weidman, C.; Ducey, T. F.; Novak, J. M.; Watts, D. W.; Rushmiller, H.; Spokas, K. A.; Ippolito, J. A.; Johnson, M. G. (2021). Phytostabilization of acidic mine tailings with biochar, biosolids, lime, and locally-sourced microbial inoculum: Do amendment mixtures influence plant growth, tailing chemistry, and microbial composition? Applied Soil Ecology, 165, 103962. https://doi.org/10.1016/j.apsoil.2021.103962

Vu, Q. D.; De Neergaard, A.; Tran, T. D.; Hoang, Q. Q.; Ly, P.; Tran, T. M.; Jensen, L. S. (2015). Manure, biogas digestate and crop residue management affects methane gas emissions from rice paddy fields on Vietnamese smallholder livestock farms. Nutrient Cycling in Agroecosystems, 103(3), 329–346. https://doi.org/10.1007/s10705-015-9746-x

Wang, B.; Lee, X.; Theng, B. K.; Zhang, L.; Cheng, H.; Cheng, J.; Lyu, W. (2019). Biochar addition can reduce NOx gas emissions from a calcareous soil. Environmental Pollutants and Bioavailability, 31(1), 38-48. https://doi.org/10.1080/09542299.2018.1544035

Wei, M.; Liu, X.; He, Y.; Xu, X.; Wu, Z.; Yu, K.; Zheng, X. (2020). Biochar inoculated with Pseudomonas putida improves grape (Vitis vinifera L.) fruit quality and alters bacterial diversity. Rhizosphere, 16, 100261 https://doi.org/10.1016/j.rhisph.2020.100261

Wei, W.; Liu, S.; Cui, D.; Ding, X. (2021). Interaction between nitrogen fertilizer and biochar fertilization on crop yield and soil chemical quality in a temperate region. Journal of Agricultural Science, 159 (1–2), 106–115. https://doi.org/10.1017/S0021859621000277

Winders, T. M.; Jolly-Breithaupt, M. L.; Wilson, H. C.; Macdonald, J. C.; Erickson, G. E.; Watson, A. K. (2019). Evaluation of the effects of biochar on diet digestibility and methane production from growing and finishing steers. Translational Animal Science, 3(2), 775-783. https://doi.org/10.1093/tas/txz027

Wu, C.; Li, Y.; Chen, M.; Luo, X.; Chen, Y.; Belzile, N.; Huang, S. (2018). Adsorption of cadmium on degraded soils amended with maize-stalk-derived biochar. International Journal of Environmental Research and Public Health, 15(11), 2331. https://doi.org/10.3390/ijerph15112331

Yan, S.; Gao, Y.; Tian, M.; Tian, Y.; Li, J. (2021). Comprehensive evaluation of effects of various carbon-rich amendments on tomato production under continuous saline water irrigation: Overall soil quality, plant nutrient uptake, crop yields and fruit quality. Agricultural Water Management, 255, 106995. https://doi.org/10.1016/j.agwat.2021.106995

Yan, T.; Xue, J.; Zhou, Z.; Wu, Y. (2021). Biochar-based fertilizer amendments improve the soil microbial community structure in a karst mountainous area. Science of the Total Environment, 794, 148757. https://doi.org/10.1016/j.scitotenv.2021.148757

Yan, T.; Xue, J.; Zhou, Z.; Wu, Y. (2022). Biochar and compost amendments alter the structure of the soil fungal network in a karst mountainous area. Land Degradation and Development, 33(5), 685–697. https://doi.org/10.1002/ldr.4148

Yang, L.; Bian, X.; Yang, R.; Zhou, C.; Tang, B. (2018). Assessment of organic amendments for improving coastal saline soil. Land Degradation and Development, 29(9), 3204–3211. https://doi.org/10.1002/ldr.3027

Yin, S.; Zhang, X.; Suo, F.; You, X.; Yuan, Y.; Cheng, Y.; Zhang, C.; Li, Y. (2022). Effect of biochar and hydrochar from cow manure and reed straw on lettuce growth in an acidified soil. Chemosphere, 298, 134191. https://doi.org/10.1016/j.chemosphere.2022.134191

Yousaf, M. T. B.; Nawaz, M. F.; Rehman, M. Z. U.; Rasul, F.; Tanvir, M. A. (2021). Ecophysiological response of early stage Eucalyptus camaldulensis to biochar and other organic amendments under salt stress. Pakistan Journal of Agricultural Sciences, 58(3), 999–1006. https://doi.org/10.21162/PAKJAS/21.1012

Yousaf, M. T. B.; Nawaz, M. F.; Zia Ur Rehman, M.; Gul, S. L.; Yasin, G.; Rizwan, M.; Ali, S. (2021). Effect of three different types of biochars on eco-physiological response of important agroforestry tree species under salt stress. International Journal of Phytoremediation, 23(13), 1412–1422. https://doi.org/10.1080/15226514.2021.1901849

Zhang, Q.; Wan, G.; Zhou, C.; Luo, J.; Lin, J.; Zhao, X. (2020). Rehabilitation effect of the combined application of bamboo biochar and coal ash on ion-adsorption-type rare earth tailings. Journal of Soils and Sediments, 20(9), 3351–3357. https://doi.org/10.1007/s11368-020-02670-8

Zhao, C.; Zhang, Y.; Liu, X.; Ma, X.; Meng, Y.; Li, X.; Quan, X.; Shan, J.; Zhao, W.; Wang, H. (2020). Comparing the Effects of Biochar and Straw Amendment on Soil Carbon Pools and Bacterial Community Structure in Degraded Soil. Journal of Soil Science and Plant Nutrition, 20(2), 751–760. https://doi.org/10.1007/s42729-019-00162-4

Zhao, L.; Zhang, X.; Cheng, G.; Zhang, L.; Liu, X.; Li, H. (2017). Effects of biochar on microbial functional diversity of vegetable garden soil. Acta Ecologica Sinica, 37(14), 4754–4762. https://doi.org/10.5846/stxb201604220758

Zhaoxiang, W.; Huihu, L.; Qiaoli, L.; Changyan, Y.; Faxin, Y. (2020). Application of bio-organic fertilizer, not biochar, in degraded red soil improves soil nutrients and plant growth. Rhizosphere, 16, 100264. https://doi.org/10.1016/j.rhisph.2020.100264

Zhelezova, A.; Cederlund, H.; Stenström, J. (2017). Effect of Biochar Amendment and Ageing on Adsorption and Degradation of Two Herbicides. Water, Air, and Soil Pollution, 228, 216. https://doi.org/10.1007/s11270-017-3392-7