Inteligencia computacional para la medición de presencia de dolor mediante el uso de señales electrofisiológicas

Computational Intelligence to Assess the Existence of Pain, Based on the Use of Electrophysiological Signals

Contenido principal del artículo

Lina María Peñuela
Edinson Felipe Porras Hilarión

Resumen

El dolor es un problema de salud que afecta a las personas física y emocionalmente.
Para determinar el nivel de dolor experimentado, se realiza una encuesta que implica
autoevaluación por parte del paciente y capacidades de comunicación verbal o facial. En este
artículo, se presenta la comparación de los resultados de dos algoritmos computacionales
para dos tipos de clasificación: el primero discrimina entre dolor y no dolor, el segundo
clasifica tres niveles de dolor. Los algoritmos empleados fueron Máquina de Soporte
Vectorial (SVM) y el método de Análisis de Discriminante Cuadrático (QDA). Se indujo
dolor agudo a 15 participantes por electroestimulación, se evaluó electromiografía (EMG),
electrocardiografía (ECG), actividad electrodérmica (EDA), y electroencefalografía (EEG), y
se le pidió a los participantes reportar el dolor percibido mediante la escala análoga visual.
Posteriormente se adquirieron características de las señales asociadas al dolor. Se realizaron
tres análisis: clasificación binaria con múltiples variables, binaria con una característica y
clasificación de tres niveles con varias características. Se compararon los algoritmos SVM y
QDA utilizando la matriz de confusión y el costo computacional. Para la clasificación binaria
la exactitud del SVM fue del 88,02% y del QDA del 70,78%, con un costo computacional de
9,587s y 3,023s respectivamente.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Bellmann P.; Schwenker F. (2020). Automated pain assessment: Is it useful to combine person-specific data samples?. 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Caberra, ACT, Australia. pp. 1588–1593. DOI: 10.1109/SSCI47803.2020.9308279

Breau L. (2010). The science of pain measurement and the frustration of clinical pain assessment: Does an individualized numerical rating scale bridge the gap for children with intellectual disabilities? PAIN. 150(2), pp. 213-214. DOI: 10.1016/j.pain.2010.03.029

Briggs M.; Closs J. S. (1999). A descriptive study of the use of visual analogue scales and verbal rating scales for the assessment of postoperative pain in orthopedic patients. Journal of Pain and Symptom Management. 18(6), pp. 438–446. DOI: 10.1016/s0885-3924(99)00092-5.

Díaz, R.; Marulanda, F. (2019). Dolor crónico nociceptivo y neuropático en población adulta de Manizales (Colombia). Acta Médica Colombiana, 36(1), pp. 10-17. DOI: 10.36104/amc.2011.151

Christie S.; di Fronso S.; Bertollo M.; Werthner P. (2017). Individual alpha peak frequency in ice hockey shooting performance. Frontiers in Psychology. 8, p. 762. DOI: 10.3389/fpsyg.2017.00762

Egede, J. O.; Song, S.; Olugbade, T. A.; Wang, C.; Williams, A. C. D. C.; Meng, H.; Aung, M.; Lane, N. D.; Valstar, M.; Bianchi-Berthouze, N. (2020). EMOPAIN challenge 2020: Multimodal pain evaluation from facial and bodily expressions. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG), Buenos Aires, Argentina. pp. 849–856. DOI: 10.1109/FG47880.2020.00078

Erdogan, B.; Ogul, H. (2020). Objective pain assessment using vital signs. Procedia Computer Science. 170, pp. 947–952. DOI:10.1016/j.procs.2020.03.103

Hadjileontiadis, L. J. (2015). Eeg-based tonic cold pain characterization using wavelet higher order spectral features. IEEE Transactions on Biomedical Engineering. 62(8), pp. 1981–1991. DOI: 10.1109/TBME.2015.2409133

Hadjileontiadis, L. J. (2018). Continuous wavelet transform and higher-order spectrum: combinatory potentialities in breath sound analysis and electroencephalogram-based pain characterization. Philosophical Transactions of The Royal Society a Mathematical, physical, and engineering sciences. 376 (2126). DOI: 10.1098/rsta.2017.0249

Hassan, T.; Seuß, D.; Wollenberg, J.; Weitz, K.; Kunz, M.; Lautenbacher, S.; Garbas, J. U.; Schmid, U. (2021). Automatic detection of pain from facial expressions: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. 43(6), pp. 1815–1831. DOI: 10.5121/ijcses.2012.3604. 47

Hautala, A. J.; Karppinen, J.; Sepp ̈anen, T. (2016). Short-term assessment of autonomic nervous system as a potential tool to quantify pain experience. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando,FL, USA. pp. 2684–2687. DOI: 10.1109/EMBC.2016.7591283

Hung, C.; Shen, T.; Liang, C.; Wu, W. (2014). Using surface electromyography (semg) to classify low back pain based on lifting capacity evaluation with principal component analysis neural network method. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Chicago, IL, USA. pp. 18–21. DOI: 10.1109/EMBC.2014.6943518

Jollant, F.; Voegeli, G.; Kordsmeier, N. C.; Carbajal, J. M.; Richard-Devantoy, S.; Turecki, G.; Caceda, R. (2019). A visual analog scale to measure psychological and physical pain: A preliminary validation of the ppp-vas in two independent samples of depressed patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 90, pp.55–61. DOI: 10.1016/j.pnpbp.2018.10.018

Kostyunina, M. B.; Kulikov, M. A. (1996). Frequency characteristics of eeg spectra in the emotions. Neuroscience and Behavioral Physiology. 26(4), pp. 340–343. DOI: 10.1007/BF02359037

Lusher, J.; Elander, J.; Bevan, D.; Telfe,r P.; Burton, B. (2006). Analgesic addiction and pseudo-addiction in painful chronic illness. The Clinical Journal of Pain. 22(3). DOI: 10.1097/01.ajp.0000176360.94644.41

Medrano, R.; Varela, A.; Domínguez, M.; PardM, G.; Acosta, Y.; Pardo, G. (2010). Aspectos epidemiológicos relacionados con el

dolor en la población adulta. Revista Archivo Médico de Camagüey. 14(4). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025-02552010000400013&lng=es&tlng=es.

Monroe, T. B.; Misra, S.; Habermann, R. C.; Dietrich, M. S.; Bruehl, S. P.; Cowan, R. L.; Newhouse, P. A.; Simmons, S. F. (2015). Specific physician orders improve pain detection and pain reports in nursing home residents: Preliminary data. Pain management nursing: official journal of the American Society of Pain Management Nurses. 16(5), pp. 770–780. DOI: 10.1016/j.pmn.2015.06.002

Nir, R. R.; Sinai, A.; Raz, E.; Sprecher, E.; Yarnitsky, D. (2010). Pain assessment by continuous eeg: Association between subjective perception of tonic pain and peak frequency of alpha oscillations during stimulation and at rest. Brain research. 1344, pp. 77–86. DOI: 10.1016/j.brainres.2010.05.004

Nisbet, G.; Sehgal, A. (2019). Pharmacology in the management of chronic pain. Anaesthesia and Intensive Care Medicine. 20(10), pp. 555 – 558. DOI:10.1016/j.mpaic.2019.07.009

Nora D. (2014). America’s addiction to opioids: Heroin and prescription drug abuse. Pearson Educacion. Padmanabhan S, SindhuG. 2014. Design of an ecg acquisition device for the nonlinear analysis of heart rate variability (hrv). 02

Petrovic, P.; Petersson, K. M.; Ghatan, P.; Stone-Elander, S.; Ingvar, M. (2000). Pain-related cerebral activation is altered by a distracting cognitive task. Pain. 85, pp. 19–30. DOI: 10.1016/s0304-3959(99)00232-8

Pikulkaew, K.; Chouvatut, V. (2021). Enhanced pain detection and movement of motion with data augmentation based on deep learning. 2021 13th International Conference on Knowledge and Smart Technology (KST), Bangsaen, Chounburi, Thailand. pp. 197–201. DOI: 10.1109/KST51265.2021.9415827

Pouromran, F.; Radhakrishnan, S.; Kamarthi S. (2021). Exploration of physiological sensors, features, and machine learning models for pain intensity estimation. PLoS One. 16(7). DOI: 10.1371/journal.pone.0254108

Lo Presti, L.; La Cascia, M. (2017). Boosting hankel matrices for face emotion recognition and pain detection. Computer Vision and Image Understanding. 156, pp.19–33. DOI: 10.1016/J.CVIU.2016.10.007

Rathee, N.; Ganotra, D. (2015). A novel approach for pain intensity detection based on facial

feature deformations. Journal of Visual Communication and Image Representation. 33, pp. 247 -254. DOI: 10.1016/J.JVCIR.2015.09.007

Rodriguez, P.; Cucurull, G.; González, J.; Gonfaus, J. M.; Nasrollahi, K.; Moeslund, T. B.; Roca, F. X. (2022). Deep pain: Exploiting long short-term memory networks for facial expression classification. IEEE Transactions on Cybernetics. 52(5), pp. 3314-3324. DOI: 10.1109/TCYB.2017.2662199

Rojo, R.; Prados-Frutos, J. C.; López-Valverde, A. (2015). Pain assessment using the facial action coding system. A systematic review. Medicina Clínica (English Edition). 145(8), pp. 350–355. DOI: 10.1016/j.medcli.2014.08.010

Roy, S. D.; Bhowmik, M. K.; Saha, P.; Ghosh, A. K. (2016). An approach for automatic pain detection through facial expression. Procedia Computer Science. 84, pp. 99–106. DOI:10.1016/j.procs.2016.04.072

Rupenga, M.; Vadapalli, H. B. (2016). Automatic spontaneous pain recognition using supervised classification learning algorithms. 2016 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), South Africa, Stellenbosch. IEEE. pp. 1-6. DOI:10.1109/ROBOMECH.2016.7813150

Siqueira, S. R. D. T.; de Siqueira, J. T. T. T.; Teixeira, M. J. (2020). Chronic pain, somatic unexplained complaints and multimorbidity: A mutimorbidity painful syndrome?. Medical Hypotheses. 138, p. 109598. DOI: 10.1016/j.mehy.2020.109598.

Stahlschmidt, L.; Friedrich, Y.; Zernikow, B.; Wager, J. (2018). Assessment of pain-related disability in pediatric chronic pain: A comparison of the functional disability inventory and the pediatric pain disability index. Clinical Journal of Pain. 34 (2), pp. 1173-1179. DOI: 10.1097/AJP.0000000000000646

Subramaniam, S. D.; Dass, B. (2021). Automated nociceptive pain assessment using physiological signals and a hybrid deep learning network. IEEE Sensors Journal. 21(3), pp. 3335–3343. DOI: 10.1109/JSEN.2020.3023656.

Susam, B.; Akcakaya, M.; Nezamfar, H.; Diaz, D.; Xu, X.; de Sa, V.; Craig, K.; Huang, J.; Goodwin, M. (2018). Automated pain assessment using electrodermal activity data and machine learning. 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA. IEEE Sensors Journal, pp. 372–375. DOI: 10.1109/JSEN.2020.3023656.

Susam, B. T.; Riek, N. T.; Akcakaya, M.; Xu, X.; de Sa,, V. R.; Nezamfar, H.; Diaz, D.; Craig, K. D.; Good-win, M. S.; Huang, J. S. (2022). Automated pain assessment in children using electrodermal activity and video data fusion via machine learning. IEEE Transactions on Biomedical Engineering. 69(1), pp. 422–431. DOI: 10.1109/TBME.2021.3096137

Thiam, P.; Hihn, H.; Braun, D.A.; Kestler, H.A.; Schwenker, F. (2021). Multi-modal pain intensity assessment based on physiological signals: A deep learning perspective. Frontiers in Physiology. 12. https://doi.org/10.3389/fphys.2021.720464

Van, A. J.; Van den, W. (2015). The misuse of prescription opioids: A threat for Europe? Current Drug Abuse Reviews, 8(1), pp. 3–14. DOI: 10.2174/187447370801150611184218

Wang, R.; Xu, K.; Feng, H.; Chen, W. (2020). Hybrid RNN-ANN based deep physiological network for pain recognition. 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), Montreal, QC, Canada. Institute of Electrical and Electronics Engineers (IEEE), pp. 5584–5587. DOI: 10.1109/EMBC44109.2020.9175247.

Wong, T.T.; Yeh, P.Y. (2020). Reliable accuracy estimates from fold cross validation. IEEE Transactions on Knowledge and Data Engineering. 32(8):1586–1594. DOI: 10.1109/TKDE.2019.2912815

Yang, F.; Banerjee, T.; Panaggio, M. J.; Abrams, D. M.; Shah, N.R. (2019). Continuous pain assessment using ensemble feature selection from wearable sensor data. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, Institute of Electrical and Electronics Engineers (IEEE), pp. 569–576. DOI: 10.1109/BIBM47256.2019.8983282