Elección de la función de deseabilidad para diseños óptimos bajo restricciones
Elección de la función de deseabilidad para diseños óptimos bajo restricciones
Contenido principal del artículo
Resumen
Descargas
Detalles del artículo
Referencias (VER)
Atkinson, A.C.; Donev, A.N.; Tobias, R.D. (2007). Optimum Experimental Designs, with SAS. Oxford University Press, Oxford, pp.119-328.
Bates, D. M.; Watts, D. C. (1988). Nonlinear Regression Analysis and Its Applications. Wiley, New York, pp.33-62,269.
Derringer, G. C. (1994). A Balancing Act-Optimizing Products Property. Quality Progress, 27(6), pp.51-58.
Derringer, G.; Suich, R. (1980). Simultaneous Optimization of Several Response Variables. Journal of Quality Technology, 12, pp.214-219.
Gibb, R. D. (1998). Optimal Treatment Combination Estimation for Univariate and Multivariate Response Surface Applications. PhD thesis, Richmond, Virginia, Virginia Commonwealth University, Department of Biostatistics, 289 pp.
Harrington, E. (1965). The desirability function. Industrial Quality Control, 21(10), pp.494-498.
Nelder, J. A.; Mead, R. (1965). A simplex method for function minimization. The computer Journal, 7(4), pp.308-313.
Parker, S. M. (2005). Solutions to Reduce Problems Associated with Experimental Designs for Nonlinear Models: Conditional Analysis and Penalized Optimal Designs. PhD thesis, Richmond, Virginia, Virginia Commonwealth University, Department of Biostatistics, 130 pp.
Parker, S.; Gennings, C. (2008). Penalized Locally Optimal Experimental Designs for Nonlinear Models. Journal of Agricultural, Biological and Environmental Statistics, 13(3), pp.334-354.
R Core Team. (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2012.