Modelación de la contribución arbórea en análisis de susceptibilidad a deslizamientos superficiales
Modelación de la contribución arbórea en análisis de susceptibilidad a deslizamientos superficiales
Contenido principal del artículo
Resumen
Descargas
Detalles del artículo
Referencias (VER)
Baum, R. L.; Savage, W. Z.; Godt, J. W. (2002). TRIGRS–a Fortran program for transient rainfall infiltration and grid–based regional slope–stability analysis. USGS Open File Report 02–0424. US Geological Survey, Reston, VA.
Baum, R. L.; Savage, W. Z.; Godt, J. W. (2008). TRIGRS- A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2. 0. U.S. Geological Survey Open-File Report.
Baum, R. L.; Godt, J. W.; Savage, W. Z. (2010). Estimating the timing and location of shallow rainfall‐induced landslides using a model for transient, unsaturated infiltration. Journal of Geophysical Research: Earth Surface, 115(F3).
Baum, R. L.; Godt, J. W.; Coe, J. A. (2011). Assessing susceptibility and timing of shallow landslide and debris flow initiation in the Oregon Coast Range, USA. In 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp. 825–834.
Bordoni, M.; Meisina, C.; Valentino, R.; Bittelli, M.; Chersich, S. (2015a). Site-specific to local-scale shallow landslides triggering zones assessment using TRIGRS. Natural Hazards & Earth System Sciences, 15(5).
Bordoni, M.; Meisina, C.; Valentino, R.; Lu, N.; Bittelli, M.; Chersich, S. (2015b). Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis. Engineering Geology, 193, pp. 19–37.
Burton, A.; Bathurst, J. C. (1998). Physically based modelling of shallow landslide sediment yield at a catchment scale. Environmental Geology, 35(2-3), pp. 89–99. Disponible en: http://doi.org/10.1007/s002540050296.
Cascini, L.; Cuomo, S.; Della Sala, M. (2011). Spatial and temporal occurrence of rainfall-induced shallow landslides of flow type: A case of Sarno-Quindici, Italy. Geomorphology, 126(1), pp. 148–158.
Chien-Yuan, C.; Tien-Chien, C.; Fan-Chieh, Y.; Sheng-Chi, L. (2005). Analysis of time-varying rainfall infiltration induced landslide. Environmental Geology, 48(4-5), pp. 466–479.
Coe, J. A.; Michael, J. A.; Crovelli, R. A.; Savage, W. Z.; Laprade, W. T.; Nashem, W. D. (2004). Probabilistic assessment of precipitation-triggered landslides using historical records of landslide occurrence, Seattle, Washington. Environmental & Engineering Geoscience, 10(2), pp. 103–122.
Chow, V. T.; Maidment, D. R.; Mays, L. W. (1988). Applied hydrology. McGraw-Hill Publishing Company, 572 p.
Crovelli, R. A. (2000). Probability models for estimation of number and costs of landslides. US Geological Survey.
Frattini, P.; Crosta, G.; Sosio, R. (2009). Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides. Hydrological Processes, 23(10), pp. 1444–1460. Disponible en: http://doi.org/10.1002/hyp.7269.
Godt, J. W.; Baum, R. L.; Chleborad, A. F. (2006). Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surface Processes and Landforms, 31(1), pp. 97–110.
Gray, D. H.; Sotir, R. B. (1996). Biotechnical and soil bioengineering slope stabilization: A practical guide for erosion control. John Wiley & Sons, Ed. Wiley, pp. 101-102.
Guzzetti, F.; Galli, M.; Reichenbach, P.; Ardizzone, F.; Cardinali, M. (2006). Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Science, 6(1), pp. 115–131.
Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides, 5(1), pp. 3–17.
Hammond, C.; Hall, D.; Miller, S.; Swetic, P. (1992). Level I Stability Analysis (LISA) documentation for version 2.0. USDA Forest Service Intermountain Research Station, Ogden, UT, General Technical Report INT-285. US Department of Agriculture, Forest Service, Intermountain Research Station, pp. 30-32.
ISEA Ltda. (2006). Plan de saneamiento y manejo de vertimientos – PSMV - Vereda el Cabuyal, municipio de Copacabana-Antioquia, 182 p.
Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), pp. 1897-1910. Disponible en: http://doi.org/10.1029/2000WR900090.
Jelínek, R.; Wagner, P. (2007). Landslide hazard zonation by deterministic analysis (Vel’ká Causa landslides area, Slovakia). Lanslides, 4(4), pp. 339–350.
Kim, D.; Im, S.; Lee, S. H.; Hong, Y.; Cha, K.-S. (2010). Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRS model. Journal of Mountain Science, 7(1), pp. 83–91.
Kim, D.; Im, S.; Lee, C.; Woo, C. (2013). Modeling the contribution of trees to shallow landslide development in a steep, forested watershed. Ecological Engineering, 61, pp. 658–668. Disponible en: http://doi.org/10.1016/j.ecoleng.2013.05.003.
Liao, Z.; Hong, Y.; Kirschbaum, D.; Adler, R. F.; Gourley, J. J.; Wooten, R. (2011). Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina. Natural Hazards, 58(1), pp. 325–339.
Liu, C.-N.; Wu, C.-C. (2008). Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach. Environmental Geology, 55(4), pp. 907–915.
Liu, S. (1997). A new model for the prediction of rainfall interception in forest canopies. Ecological Modelling, 99(2-3), pp. 151–159. Disponible en: http://doi.org/10.1016/S0304-3800(97)01948-0.
Marín, R. J.; Castro, J. D. (2015). Efecto de los árboles en la ocurrencia de deslizamientos superficiales en una cuenca del Valle de Aburrá. Universidad de Antioquia, 103 p.
Meisina, C.; Scarabelli, S. (2007). A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology, 87(3), pp. 207–223.
Montgomery, D. R.; Dietrich, W. E. (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30(4), pp. 1153–1171.
Montrasio, L.; Valentino, R.; Losi, G. L. (2011). Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale. Natural Hazards and Earth System Science, 11(7), pp. 1927–1947.
Montrasio, L.; Schilirò, L.; Terrone, A. (2015). Physical and numerical modelling of shallow landslides. Landslides, pp. 1–11.
Morgan, R. P. C.; Rickson, R. J. (2003). Slope Stabilization and Erosion Control: A Bioengineering Approach: A Bioengineering Approach. Taylor & Francis. pp. 37-40.
Norris, J. E., Greenwood, J. R., Achim, A., Gardiner, B. A., Nicoll, B. C., Cammeraat, E., & Mickovski, S. B. (2008). Hazard assessment of vegetated slopes. In Slope Stability and Erosion Control: Ecotechnological Solutions, Springer, pp. 119–166.
Pack, R. T.; Tarboton, D. G.; Goodwin, C. N. (1998). The SINMAP approach to terrain stability mapping. In 8th congress of the international association of engineering geology, Vancouver, British Columbia, Canada, pp. 21–25.
Park, D. W.; Nikhil, N. V.; Lee, S. R. (2013). Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Natural Hazards and Earth System Sciences, 13(11), pp. 2833–2849.
Raia, S.; Alvioli, M.; Rossi, M.; Baum, R. L.; Godt, J. W.; Guzzetti, F. (2013). Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geoscientific Model Development and Discussions, 6(1), pp. 1367-1426.
Richards, L. A. (1931). Capillary conduction of liquids through porous mediums. Journal of Applied Physics, 1(5), pp. 318–333.
Rutter, A. J. J.; Kershaw, K. A. A.; Robins, P. C. C.; Morton, A. J. J. (1971). A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agricultural Meteorology, 9(1969), pp. 367–384. Disponible en: http://doi.org/10.1016/0002-1571(71)90034-3.
Rutter, A. J.; Morton, A. J.; Robins, P. C. (1975). A predictive model of rainfall interception in forests. II. Generalization of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology, pp. 367–380.
Salciarini, D.; Godt, J. W.; Savage, W. Z.; Conversini, P.; Baum, R. L.; Michael, J. A. (2006). Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides, 3(3), pp. 181–194.
Sidle, R. C.; Ochiai, H. (2006). Landslides: Processes, Prediction, and Land Use. American Geophysical Union, pp. 89-110.
Smith, R.; Vélez, M. V. (1997). Hidrología de Antioquia. Medellín: Secretaría de Obras Públicas Departamentales, 253 p.
Stokes, A.; Norris, J.; van Beek, L. P. H.; Bogaard, T.; Cammeraat, E.; Mickovski, S.; Fourcaud, T. (2008). How Vegetation Reinforces Soil on Slopes. In J. Norris, A. Stokes, S. Mickovski, E. Cammeraat, R. van Beek, B. Nicoll, & A. Achim (Eds.), Slope Stability and Erosion Control: Ecotechnological Solutions SE - 4, pp. 65–118. Springer Netherlands. Disponible en: http://doi.org/10.1007/978-1-4020-6676-4_4.
Taylor, D. W. (1948). Fundamentals of soil mechanics. Soil Science, 66(2), 161 p.
Vieira, B. C.; Fernandes, N. F. (2010). Shallow landslide prediction in the Serra do Mar, Sao Paulo, Brazil. Natural Hazards and Earth System Sciences, 10(9), pp. 1829–1837.
Wu, W.; Sidle, R. C. (1995). A distributed slope stability model for steep forested basins. Water Resources Research, 31(8), pp. 2097–2110.
Zizioli, D.; Meisina, C.; Valentino, R.; Montrasio, L. (2013). Comparison between different approaches to modeling shallow landslide susceptibility: a case history in Oltrepo Pavese, Northern Italy. Nat Hazards Earth Syst Sci, 13(3), pp. 559–573.