Caracterización de un conversor de luz a frecuencia TSL235R-LF, para su aplicación en un sistema de comunicación por luz visible
Characterization Of A Light To Frequency Converter Tsl235r-Lf, For Its Application In A Visible Light Communication System
Contenido principal del artículo
Resumen
Los sistemas VLC (Visible Light Communication), emplean como transmisores LEDs (Light Emitting Diodes) y como receptores, fotodetectores. Esto es debido a su alta velocidad de repuesta y sirven para comunicaciones ópticas no guiadas. Existen diferentes tipos de fotodetectores, los más conocidos son los fotodiodos de juntura tipo PN, PIN y APD.
En este trabajo se presenta la caracterización de un sensor LTF (Light To Frecuency) TSL235R-LF el cual consta de un fotodiodo tipo PIN y un convertidor de corriente a frecuencia. Este dispositivo genera una señal cuadrada de amplitud constante, ciclo de dureza del 50% y la frecuencia resultante es una función de la potencia óptica incidente. En nuestro experimento se usaron como fuente, emisores LED RGB y se pudo observar que la frecuencia generada por el sensor aumenta o disminuye linealmente dependiendo de la potencia óptica incidente. Se notó que, para iguales potencias ópticas detectadas, a diferentes longitudes de onda (rojo, verde y azul), la frecuencia de salida del sensor LTF es diferente, lo que resulta de gran interés para la distinción de símbolos en el formato de modulación CSK en sistemas VLCDescargas
Detalles del artículo
Referencias (VER)
Agrawal, G. P. (2002). Fiber-Optic Communications Systems, Third Edition. Communications (Vol. 6). https://doi.org/10.1002/9780470611388
AMS. (2016). TSL238, 1–22. http://ams.com/eng/ Products/Light-Sensors/Light-to-Fre- quency /TSL238
Barners, F., & Greenebaum, B. (2016). Some Effects of Weak Magnetic Fields on Biolo- gical Systems: RF fields can change radical concentrations and cancer cell growth rates. Iee Power Electronics Magazine, 67(1), 60–68. https://doi.org/10.1109/ MPEL.2015.2508699
Fletcher, S., & Telecom, N. E. C. (2014). Cellular Architecture and Key Technologies for 5G Wireless Communication Networks, (February), 122–130.
George, J. J., Mustafa, M. H., Osman, N. M., Ahmed, N. H., & Hamed, M. (2014). A Survey on Visible Light Communication, 3(2), 3905–3908.
Ghassemlooy Z., Alves L., Zvanovec S., Khalighi M. (2017). Visible Light Communications: Theory and Applications.
Haas H, “Wireless Data from Every Light Bulb,” TED website, Aug. 2011; http://bit.ly/tedvlc.
Jin, Y., Fu, Y., Hu, Y., Chen, L., Wu, H., Ju, G., ... Wang, T. (2016). A high color purity deep red emitting phosphor SrGe4O9: Mn4+ for warm white LEDs. Powder Technology, 292, 74–79. https://doi.org/10.1016/j.powtec.2016.01.017
Kuo, W., Chiang, C., & Huang, Y. (2008). An Automatic Light Monitoring System with Light-to- Frequency Converter for Flower Planting, 0–3.
Wanser, K. H., Mahrley, S., & Tanner, J. (2012). High accuracy optical