Identificación de Instrumentos Musicales de Cuerdas Pulsadas de la Región Andina Colombiana en Solo, Mediante Técnicas de Aprendizaje de Máquina
Identificación de Instrumentos Musicales de Cuerdas Pulsadas de la Región Andina Colombiana en Solo, Mediante Técnicas de Aprendizaje de Máquina
Barra lateral del artículo
Términos de la licencia (VER)
Declaración del copyright
Los autores ceden en exclusiva a la Universidad EIA, con facultad de cesión a terceros, todos los derechos de explotación que deriven de los trabajos que sean aceptados para su publicación en la Revista EIA, así como en cualquier producto derivados de la misma y, en particular, los de reproducción, distribución, comunicación pública (incluida la puesta a disposición interactiva) y transformación (incluidas la adaptación, la modificación y, en su caso, la traducción), para todas las modalidades de explotación (a título enunciativo y no limitativo: en formato papel, electrónico, on-line, soporte informático o audiovisual, así como en cualquier otro formato, incluso con finalidad promocional o publicitaria y/o para la realización de productos derivados), para un ámbito territorial mundial y para toda la duración legal de los derechos prevista en el vigente texto difundido de la Ley de Propiedad Intelectual. Esta cesión la realizarán los autores sin derecho a ningún tipo de remuneración o indemnización.
La autorización conferida a la Revista EIA estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo en el Sistema Open Journal Systems de la Revista EIA, así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
Todos los contenidos de la Revista EIA, están publicados bajo la Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Licencia
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-NoDerivativa 4.0 Internacional
Contenido principal del artículo
Resumen
Son muchos los estudios propuestos sobre la identificación de instrumentos musicales, pero ninguno ha estado enfocado en instrumentos de cuerda pulsada de la región andina colombiana como lo son: tiple, tiple requinto, guitarra y bandola. Por ello, se propone la identificación de estos utilizando técnicas de aprendizaje de máquina tales como Análisis discriminante, Árbol de Decisión, kNN, SVM, ANNs y utilizando tres métodos de reducción de datos: Feature Selection; PCA con 1, 100 y 1000 componentes principales; y extrayendo las cinco primeras frecuencias parciales junto a sus amplitudes normalizadas. Esta investigación se realizó usando una base de datos de 1000 grabaciones de audio monofónicas, construida a partir del registro de las notas de la primera posición de cada instrumento en formato WAV. Se utilizó como Método de Validación Cruzada con un k igual a cinco para realizar las Matrices de Confusión y Curvas ROC. La mejor Exactitud se alcanzó con ANNs que tuvo un porcentaje de 99,8% en la identificación, además las curvas ROC mostraron un área bajo la curva muy cercana a uno para la guitarra.
Descargas
Detalles del artículo
indira juliana Tobon Gonzalez, Universidad Tecnológica de Pereira
Departamento: Risaralda
Ciudad:Pereira
Rango: Estudiante
Jimmy Alexander Cortés Osorio, Universidad Tecnológica de Pereira
Departamento: Risaralda
Ciudad:Pereira
Rango: Docente
Artículos similares
- Cristian David Candia Garcia, Luis Francisco López Castro, Sonia Alexandra Jaimes Suárez, Selección óptima del portafolio de proyectos utilizando metaheurísticas de población y trayectoria meta-optimizadas , Revista EIA: Vol. 17 Núm. 34 (2020)
También puede {advancedSearchLink} para este artículo.