Alternativas de vertimiento y reúso de aguas de producción de yacimientos convencionales y no convencionales de crudo y gas en Colombia

Alternatives for discharge and reuse of produced water from conventional and unconventional oil and gas reservoirs in Colombia

Contenido principal del artículo

Darío Naranjo-Fernández

Resumen

Las aguas de producción son el principal residuo de la explotación de yacimientos convencionales y no convencionales de crudo y gas y deben tratarse y disponerse adecuadamente para evitar la contaminación de las matrices ambientales. No obstante, la normatividad ambiental colombiana relacionada con las alternativas de gestión de estas aguas de producción está dispersa y tiene vacíos. Esta revisión tiene como objetivo analizar las alternativas de vertimiento y reúso de las aguas de producción, establecidas en la normatividad y en literatura especializada, proponer opciones para subsanar los vacíos normativos y presentar las tecnologías de tratamiento para estas aguas. Los resultados de la revisión de la normatividad evidencian vacíos relacionados con el vertimiento de las aguas de producción al aire por evaporación total o parcial en lagunas, además de vacíos y contradicciones en cuanto al vertimiento de las aguas de producción en acuíferos a través de pozos inyectores. En cuanto a la revisión de la literatura especializada, los resultados muestran opciones de reúso diferentes a las consideradas en la normatividad y dos alternativas surgen como las más comunes: recobro mejorado en yacimientos convencionales y operaciones de fracturación hidráulica en yacimientos no convencionales. Igualmente, la literatura especializada presenta una amplia disponibilidad de tecnologías de tratamiento para las aguas de producción; no obstante, su selección depende de sus características y de los límites máximos permisibles de contaminantes según la alternativa de vertimiento y reúso. Como contribuciones, esta revisión discute acerca de las principales problemáticas asociadas a la disposición de las aguas de producción a través de pozos inyectores, o su reúso en pozos productores, que podrían producir la contaminación de acuíferos y suelos: la pérdida de inyectividad de la formación y la corrosión de líneas de conducción. Adicionalmente, propone parámetros de caracterización de aguas de formación y aguas de producción crudas y tratadas, junto con posibles ensayos de compatibilidad con el fin de evitar las problemáticas discutidas.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfaq, M.Y.; Da’na, D.A. (2019). Produced water characteristics, treatment and reuse: A review. Journal of Water Process Engineering, 28, pp. 222-239. https://doi.org/10.1016/j.jwpe.2019.02.001

Aranguren-Campos, F.-A., Calderón-Carrillo, Z.; Usuriaga-Torres, J.-M. (2017). A selection methodology of flowback treatment technologies and water reuse in hydraulic fracturing in source rocks: A strategy to reduce the environmental impacts in Colombia. Ciencia, Tecnología y Futuro (CT&F), 7(1), pp. 5-30. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832017000200005&lng=en&tlng=en

Bagheri, M.; Roshandel, R.; Shayegan, J. (2018). Optimal selection of an integrated produced water treatment system in the upstream of oil industry. Process Safety and Environmental Protection, 117, pp. 67-81. https://doi.org/10.1016/j.psep.2018.04.010

Blauch, M.E. (2010). Developing effective and environmentally suitable fracturing fluids using hydraulic fracturing flowback waters. SPE-131784-MS, Society of Petroleum Engineers, SPE Unconventional Gas Conference, 23-25 February, Pittsburgh, Pennsylvania, USA. https://doi.org/10.2118/131784-MS

Boschee, P. (2014). Produced and flowback water recycling and reuse: Economics, limitations, and technology. Oil and Gas Facilities, 3(1), pp. 16-22. http://www.spe.org/ogf/print/subscribers/2014/02/07_Feat_Unconventional.pdf

Camarillo, M.K., Domen, J.K.; Stringfellow, W.T. (2016). Physical-chemical evaluation of hydraulic fracturing chemicals in the context of produced water treatment. Journal of Environmental Management, 183(1), pp. 164-174. https://doi.org/10.1016/j.jenvman.2016.08.065

Chang, H., Li, T., Liu, B., Vidic, R.D., Elimelech, M.; Crittenden, J.C. (2019). Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: A review. Desalination, 455, pp. 34-57. https://doi.org/10.1016/j.desal.2019.01.001

Chang, H., Liu, B., Yang, B., Yang, X., Guo, C., He, Q., Liang, S., Chen, S.; Yang, P. (2018). An integrated coagulation-ultrafiltration-nanofiltration process for internal reuse of shale gas flowback and produced water. Separation and Purification Technology, 211, pp. 310-321. https://doi.org/10.1016/j.seppur.2018.09.081

Collins, A.G.; Wright, C.C. (1985). Chapter 6: Enhanced oil recovery injection waters. Chilingarian G.V. (Advisory Editor). Developments in petroleum science. Elsevier Science Publishers, The Netherlands, pp. 151-221. https://doi.org/10.1016/S0376-7361(08)70568-5

Coonrod, C.L., Yin, Y.B., Hanna, T., Atkinson, A., Alvarez, P.J.J., Tekavec, T.N., Reynolds, M.A.; Wong, M.S. (2020). Fit-for-purpose treatment goals for produced waters in shale oil and gas fields. Water Research, 173, 115467. https://doi.org/10.1016/j.watres.2020.115467

Dahm, K.; Chapman, M. (2014). Produced water treatment primer: Case studies of treatment applications. Science and Technology Program Report Research Project No. 1617. U.S. Department of the Interior, Bureau of Reclamation, USA, 70 p. http://www.usbr.gov/research/projects/download_product.cfm?id=1214

Drewes, J., Cath, T., Debroux, J.; Veil, J. (2009). An integrated framework for treatment and management of produced water: Technical assessment of produced water treatment technologies. RPSEA Project 07122-12, Colorado School of Mines, Colorado, USA, 158 p. http://aqwatec.mines.edu/produced_water/treat/docs/Tech_Assessment_PW_Treatment_Tech.pdf

Esmaeilirad, N., Terry, C., Kennedy, H., Prior, A.; Carlson, K. (2016). Recycling fracturing flowback water for use in hydraulic fracturing: Influence of organic matter on stability of carboxyl-methyl-cellulose-based fracturing fluids. Society of Petroleum Engineers Journal, 21(4). https://doi.org/10.2118/179723-PA

Estrada, J.M.; Bhamidimarri, R. (2016). A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing. Fuel, 182, pp. 292-303. https://doi.org/10.1016/j.fuel.2016.05.051

Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L.C., Biak, D.R.A., Madaeni, S.S.; Abidin, Z.Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170, pp. 530-551. https://doi.org/10.1016/j.jhazmat.2009.05.044

Fetter, C.W., Boving, T.; Kreamer, D. (2018). Contaminant hydrogeology. Third Edition. Waveland Press, USA, 647 p. ISBN-13: 978-1478632795.

Gaudlip, A.W.; Paugh, L.O. (2008). Marcellus shale water management challenges in Pennsylvania. SPE-119898-MS, Society of Petroleum Engineers, SPE Shale Gas Production Conference, 16-18 November, Fort Worth, Texas, USA. https://doi.org/10.2118/119898-ms

Guerra, K., Dahm, K.; Dundorf, S. (2011). Oil and gas produced water management and beneficial use in the western United States. Science and Technology Program Report No. 157. U.S. Department of the Interior, Bureau of Reclamation, USA, 113 p. https://www.usbr.gov/research/dwpr/reportpdfs/report157.pdf

Hammer, R.; VanBriesen, J. (2012). In fracking’s wake: New rules are needed to protect our health and environment from contaminated wastewater. Technical Report D:12-05-A, Natural Resources Defense Council (NRDC), USA, 129 p. https://www.nrdc.org/sites/default/files/Fracking-Wastewater-FullReport.pdf

Hayes, T.; Arthur, D. (2004). Overview of emerging produced water treatment technologies. 11th Annual International Petroleum Conference, 12-15 October, Albuquerque, New Mexico, USA.

He, C., Zhang, T.; Vidic, R.D. (2016). Co-treatment of abandoned mine drainage and Marcellus Shale flowback water for use in hydraulic fracturing. Water Research, 104, pp. 425-431. https://doi.org/10.1016/j.watres.2016.08.030

Igunnu, E.T.; Chen, G.Z. (2014). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9, pp. 157-177. https://doi.org/10.1093/ijlct/cts049

Jiménez, S., Micó, M.M., Arnaldos, M., Medina, F.; Contreras, S. (2018). State of the art of produced water treatment. Chemosphere, 192, pp. 186-208. https://doi.org/10.1016/j.chemosphere.2017.10.139

Kurz, B.A., Stepan, D.J., Harju, J.A., Stevens B.G.; Cowan, R.M. (2011). Bakken water opportunities assessment – Phase 2: Evaluation of brackish groundwater treatment for use in hydraulic fracturing of the Bakken play, North Dakota. Final Report 2011-EERC-12-05, Energy & Environmental Research Center (EERC), University of North Dakota, USA. https://undeerc.org/water/pdf/BakkenWaterOppPhase2.pdf

Lester, Y., Ferrer, I., Thurman, E.M., Sitterley, K.A., Korak, J.A., Aiken, G.; Lindena, K.G. (2015). Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment. Science of the Total Environment, 512-513, pp. 637-644. https://doi.org/10.1016/j.scitotenv.2015.01.043

Li, L.; Lee, R. (2009). Purification of produced water by ceramic membranes: Material screening, process design and economics. Separation Science and Technology, 44(15), pp. 3455-3484. https://doi.org/10.1080/01496390903253395

Liden, T., Santos, I.C., Hildenbrand, Z.L.; Schug, K.A. (2018). Treatment modalities for the reuse of produced waste from oil and gas development. Science of the Total Environment, 643, pp. 107-118. https://doi.org/10.1016/j.scitotenv.2018.05.386

Liu, D., Li, J., Zou, C., Cui, H., Ni, Y., Liu, J., Wu, W., Zhang, L., Coyte, R., Kondash, A.; Vengosh, A. (2020). Recycling flowback water for hydraulic fracturing in Sichuan Basin, China: Implications for gas production, water footprint, and water quality of regenerated flowback water. Fuel, 272, 117621. https://doi.org/10.1016/j.fuel.2020.117621

Luek, J.L.; Gonsior, M. (2017). Organic compounds in hydraulic fracturing fluids and wastewaters: A review. Water Research, 123, pp. 536-548. https://doi.org/10.1016/j.watres.2017.07.012

MA (Ministerio de Agricultura). Decreto 1594 del 26 de junio de 1984. Ministerio de Agricultura, República de Colombia. Bogotá, 1984.

MADS (Ministerio de Ambiente y Desarrollo Sostenible). Decreto 050 del 16 de enero de 2018. Ministerio de Ambiente y Desarrollo Sostenible, República de Colombia. Bogotá, 2018b.

MADS (Ministerio de Ambiente y Desarrollo Sostenible). Decreto 1076 del 26 de mayo de 2015. Ministerio de Ambiente y Desarrollo Sostenible, República de Colombia. Bogotá, 2015b.

MADS (Ministerio de Ambiente y Desarrollo Sostenible). Resolución 1207 del 25 de julio de 2014. República de Colombia, Ministerio de Ambiente y Desarrollo Sostenible. Bogotá, 2014a.

MADS (Ministerio de Ambiente y Desarrollo Sostenible). Resolución 0421 del 20 de marzo de 2014. Ministerio de Ambiente y Desarrollo Sostenible, República de Colombia. Bogotá, 2014b.

MADS (Ministerio de Ambiente y Desarrollo Sostenible). Resolución 0631 del 17 de marzo de 2015. Ministerio de Ambiente y Desarrollo Sostenible, República de Colombia. Bogotá, 2015a.

MADS (Ministerio de Ambiente y Desarrollo Sostenible). Resolución 0883 del 18 de marzo de 2018. Ministerio de Ambiente y Desarrollo Sostenible, República de Colombia. Bogotá, 2018a.

MAVDT (Ministerio de Ambiente, Vivienda y Desarrollo Territorial). Resolución 909 del 5 de junio de 2008. Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Bogotá, 2008.

MAVDT (Ministerio de Ambiente, Vivienda y Desarrollo Territorial). Resolución 1543 del 6 de agosto de 2010. República de Colombia, Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Bogotá, 2010a.

MAVDT (Ministerio de Ambiente, Vivienda y Desarrollo Territorial). Decreto 3930 del 25 de octubre de 2010. República de Colombia, Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Bogotá, 2010b.

MME (Ministerio de Minas y Energía). Resolución 180005 del 5 de enero de 2010. República de Colombia, Ministerio de Minas y Energía. Bogotá, 2010.

MME (Ministerio de Minas y Energía). Resolución 90341 del 27 de marzo de 2014. República de Colombia, Ministerio de Minas y Energía. Bogotá, 2014.

Mohammad-Pajooh, E., Weichgrebe, D., Cuff, G., Tosarkani, B.M.; Rosenwinkel, K.-H. (2018). On-site treatment of flowback and produced water from shale gas hydraulic fracturing: A review and economic evaluation. Chemosphere, 212, pp. 898-914. https://doi.org/10.1016/j.chemosphere.2018.08.145

Neff, J., Lee, K.; DeBlois, E.M. (2011). Chapter 1. Produced water: Overview of composition, fates, and effects. Lee, K.; Neff, J. (Ed.). Produced water: Environmental risks and advances in mitigation technologies. Springer Science, USA. pp. 3-54. ISBN: 978-1-4614-0045-5. https://doi.org/10.1007/978-1-4614-0046-2

Nicot, J.-P., Scanlon, B.R., Reedy, R.C.; Costley, R.A. (2014). Source and fate of hydraulic fracturing water in the Barnett shale: A historical perspective. Environmental Science & Technology, 48(4), pp. 2464-2471. https://doi.org/10.1021/es404050r

Oetjen, K., Chan, K.E., Gulmark, K., Christensen, J.H., Blotevogel, J., Borch, T., Spear, J.R., Cath, T.Y.; Higgins, C.P. (2018). Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse. Science of the Total Environment, 619-620, pp. 654-664. https://doi.org/10.1016/j.scitotenv.2017.11.078

Pichtel, J. (2016). Oil and gas production wastewater: Soil contamination and pollution prevention. Applied and Environmental Soil Science, ID 2707989, 24 p. https://doi.org/10.1155/2016/2707989

Shafer, L. (2011). Water recycling and purification in the Pinedale Anticline field: Results from the Anticline Disposal Project. SPE 141448-MS. Society of Petroleum Engineers, SPE Americas E&P Health, Safety, Security, and Environmental Conference, 21-23 March, Houston, Texas, USA. https://doi.org/10.2118/141448-MS

Sharma, M.M.; Yen, T.F.; Chilingarian, G.V.; Donaldson, E.C. (1985). Chapter 7 Some chemical and physical problems in enhanced oil recovery operations. Chilingarian G.V. (Advisory Editor). Developments in petroleum science. Elsevier Science Publishers, The Netherlands, pp. 223-249. https://doi.org/10.1016/S0376-7361(08)70568-5

Siagian, U., Widodo, S., Khoiruddin, K., Wardani, A.; Wenten, I.G. (2018). Oilfield produced water reuse and reinjection with membrane. MATEC Web of Conferences, 156, 08005. https://doi.org/10.1051/matecconf/201815608005

Silva, T.L.S., Morales-Torres, S., Castro-Silva, S., Figueiredo, J.L.; Silva, A.M.T. (2017). An overview on exploration and environmental impact of unconventional gas sources and treatment options for produced water. Journal of Environmental Management, 200, pp. 511-529. https://doi.org/10.1016/j.jenvman.2017.06.002

Stewart, M.; Arnold, K. (2011). Produced water treatment field manual. First Edition, Gulf Professional Publishing, USA, 244 p. e-ISBN: 978-1-856-17985-0.

Stringfellow, W.T., Domen, J.K., Camarillo, M.K., Sandelin, W.L.; Borglin, S. (2014). Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing. Journal of Hazardous Materials, 275, pp. 37-54. https://doi.org/10.1016/j.jhazmat.2014.04.040

Sun, Y., Wang, D., Tsang, D.C.W., Wang, L., Ok, Y.S.; Feng, Y. (2019). A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction. Environment International, 125, pp. 452-469. https://doi.org/10.1016/j.envint.2019.02.019

Torres, L., Yadav, O.P.; Khan, E. (2016). A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Science of the Total Environment, 539, pp. 478-493. https://doi.org/10.1016/j.scitotenv.2015.09.030

U.S.-EPA (U.S. Environmental Protection Agency). (2015). Assessment of the potential impacts of hydraulic fracturing for oil and gas on drinking water resources. External Review Draft EPA/600/R‐15/047a, U.S. Environmental Protection Agency, USA, 998 p. https://cfpub.epa.gov/ncea/hfstudy/recordisplay.cfm?deid=244651

Veil, J., Puder, M., Elcock, D.; Jr. Redweik, R.J. (2004). A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. U.S. Department of Energy, USA, 87 p. https://publications.anl.gov/anlpubs/2004/02/49109.pdf

Veil, J.A. (2011). Chapter 29. Produced water management options and technologies. Lee, K.; Neff, J. (Ed.). Produced water: Environmental risks and advances in mitigation technologies. Springer Science, USA, pp. 537-571. e-ISBN: 978-1-461-40046-2. https://doi.org/10.1007/978-1-4614-0046-2

Vidic, R.D., Brantley, S.L., Vandenbossche, J.M., Yoxtheimer, D.; Abad, J.D. (2013). Impact of shale gas development on regional water quality. Science, 340(6134), 1235009. http://doi.org/10.1126/science.1235009

Yang, M. (2011). Chapter 2. Measurement of oil in produced water. Lee, K.; Neff, J. (Ed.). Produced water: Environmental risks and advances in mitigation technologies. Springer Science, USA, pp. 57-88. ISBN: 978-1-4614-0045-5. https://doi.org/10.1007/978-1-4614-0046-2

Zhang, Y., Mao, J., Zhao, J., Yang, B.; Zhang, Z. (2019). Research on the reuse technology of fracturing flowback fluids in fracking. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1-7. https://doi.org/10.1080/15567036.2019.1604885

Artículos similares

También puede {advancedSearchLink} para este artículo.