Intelligent Mobil App Design of IoT System Based on Wireless Sensor Networks for monitoring and improvement of production in fruit crops
Diseño de aplicación Móvil Inteligente de sistema IoT basado en Redes Inalámbricas del Sensores para el monitoreo y mejora la producción en cultivos de fruta
Contenido principal del artículo
Resumen
This article shows the details of the design and implementation of a wireless sensor
network (WSN) system, through the use of an Arduino prototyping platform and
Lora communication modules, to collect soil humidity, temperature, and PH data in
a fruit crop. Data is captured and stored to generate a time series of data to improve
decision-making when variation in the essential nutrient application was required.
The case study was a parcel in the village of Piedra Larga, in the municipality of
Ciénega - Boyacá, where the WSN was deployed that collects the data and allow a
visual representation to compare with reference levels and determine the nutrient
level requirements. An irrigation monitoring system is implemented by applying
artificial intelligence to assist the farmer with two key tasks: i) the activation of
the drip irrigation system seeking the efficient use of water, and ii) improving fruit
production by controlling the percentage of nutrients. The mobile application
shows real-time data monitoring of environmental and soil variables, for the
analysis of results and the concentrations of the nutrient mixture together with
the drip control to be applied to the crop. An optimal estimation of the required
nutrient concentrations was estimated from a neural network to simplify and
improve the efficiency of the farmer’s agricultural activities, such as saving water
consumption by 40% and improving fruit production by up to a 30%
Descargas
Detalles del artículo
Referencias (VER)
Ayyasamy, S., Eswaran, S., Manikandan, B., Solomon, S. P. M., & Kumar, S. N. (2020). IoT based Agri Soil Maintenance Through Micro-Nutrients and Protection of Crops from Excess Water. In 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC) (pp. 404–409). https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00076
Baldoncini, A. (2015). Efectos de la aplicación de fertilizantes sobre el pH de suelos serie Oncativo. Universidad Nacional De Cordoba. Universidad Nacional De Cordoba. Retrieved from http://hdl.handle.net/11086/1849
Carrion Sarmiento, C. L. (2018). Evaluación del rango de transmisión de LoRa para redes de sensores inalámbricos con LoRaWAN en ambientes urbanos. Universidad de Cuenca. Universidad de Cuenca. Retrieved from http://dspace.ucuenca.edu.ec/handle/123456789/31513
Coello, J. I., & Silva, D. A. (2020). Diseño E Implementación De Un Sistema De Monitoreo En Tiempo Real De Sensores De Temperatura, Turbidez, Tds Y Ph Para La Calidad Del Agua Utilizando La Tecnología Lorawan. Universidad Politécnica Salesiana SEDE GUAYAQUIL. Retrieved from https://dspace.ups.edu.ec/bitstream/123456789/7986/1/UPS-CT004855.pdf
Cruz, C. (2009). Diseño de un sistema de riego por goteo controlado y automatizado para uva italia. PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ. Retrieved from http://hdl.handle.net/20.500.12404/292
Eric, G. F. J., & Asesor:, L. J. C. S. (2009). ESTUDIO DE LOS SISTEMAS DE RIEGO LOCALIZADO POR GOTEO Y EXUDACIÓN, EN EL RENDIMIENTO DEL CULTIVO DE LECHUGA (Lactuca sativa L. var. alface stella), BAJO INVERNADERO. PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR SEDE - IBARRA.
Escobar Iza, R. D., Maliza Bedon, D. S., & Cadena Moreano, J. A. (2021). Análisis de suelos utilizando redes neuronales en las florícolas de Rosas del Sector Norte de la Provincia de Cotopaxi. RECIMUNDO, 5(2), 316–330. https://doi.org/10.26820/recimundo/5.(2).abril.2021.316-330
García, A. B. (2015). Control y monitorización de un invernadero a través de una aplicación móvil. UNIVERSIDAD POLITÉCNICA DE MADRID. Retrieved from https://core.ac.uk/download/pdf/148675384.pdf
Gutiérrez Espíritu, J., & Armas Valencia, J. (2018). Diseño de un controlador basado en redes neuronales para la irrigación por goteo sobre cultivos en el distrito de Huacho. Universidad Tecnológica del Perú. Universidad Tecnologica del Peru. Retrieved from https://hdl.handle.net/20.500.12867/1622
Hernández, S. (2020). Estudio en detalle de LoraWAN. Comparación con otras tecnologías LPWAN considerando diferentes patrones de tráfico. Universitat Oberta de catalunya. Universitat Oberta de catalunya.
Howland, F., Muñoz, L. A., Staiger-Rivas, S., James, C., & Sophie, A. (2016). Data sharing and use of ICTs in agriculture: working with small farmer groups in Colombia. Knowledge Management for Development Journal, 11(2), 1–10. Retrieved from http://journal.km4dev.org/
Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2022). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem. https://doi.org/https://doi.org/10.1016/j.aac.2022.10.001
Khanna, A., & Kaur, S. (2019). Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture. Computers and Electronics in Agriculture, 157(December 2018), 218–231. https://doi.org/10.1016/j.compag.2018.12.039
Khudadad, M., Motla, Y. H., Asghar, S., Anwar, S. A., & Iqbal, Z. (2014). A scrum based framework for e-agriculture system. In 17th IEEE International Multi Topic Conference 2014 (pp. 125–130). Rawalpindi,Pakistan: IEEE. https://doi.org/10.1109/INMIC.2014.7097324
Kiran R. Badua, D. C. N. P. (2015). Internet of Things and Cloud Computing for Agriculture in India. International Journal of Innovative and Emerging Research in Engineering, 2(12), 27–30.
Kumar, S. (2017, October). Evolution of Internet of Things(IoT). Retrieved December 18, 2022, from https://codeforbillion.blogspot.com/2017/10/evolution-of-internet-of-thingsiot.html
Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2022). IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet of Things Journal, 9(9), 6305–6324. https://doi.org/10.1109/JIOT.2020.2998584
Moya Quimbita, M. A. (2018). “Evaluación de pasarela LoRa / LoRaWAN en entornos urbanos.” Universidad Politecnica de Valencia. Retrieved from http://hdl.handle.net/10251/109791
Nóbrega, L., Gonçalves, P., Pedreiras, P., & Pereira, J. (2019). An IoT-Based Solution for Intelligent Farming. Sensors, 19(3), 603. https://doi.org/10.3390/s19030603
Tlatelpa-Becerro, -Martínez, R., & D , Castro-Goméz, U. G. (2020). Tema A4 Termofluidos: Secador Solar Predicción de Temperatura y Humedad usando Redes Neuronales Artificiales en un Secador Solar Indirecto Experimental. Retrieved from http://somim.org.mx/memorias/memorias2020/articulos/A4_6.pdf
Vázquez Rueda, M. G., Ibarra Reyes, M., Flores García, F. G., & Moreno Casillas, H. A. (2018). Redes neuronales aplicadas al control de riego usando instrumentación y análisis de imágenes para un micro-invernadero aplicado al cultivo de Albahaca. Research in Computing Science, 147(5), 93–103. https://doi.org/10.13053/rcs-147-5-7
Welch, & Shock. (2013, March). Riego por Goteo: Una introducción, 1–8. Retrieved from https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/em8782-s.pdf